

Full Model and F tests	
$Y_{ijk} = \mu + \alpha_i + \beta_k + \pi_i + (\alpha\beta)_{jk} + (\alpha\pi)_{ji} + (\beta\pi)_{ki} + (\alpha\beta\pi)_{jki} + \epsilon_{ijk}$	Effect
	S
Statistical significance of all parameters evaluated by comparing SS _{residuals} obtained with nested models	$A \qquad \sigma_{\epsilon}^2$
error terms for F tests slightly more complicated:	$A \times S$
- main effect of A evaluated with A x Subjects term	B σ_{ϵ}^2
- main effect of B evaluated with B x Subjects term	$B \times S$
- A x B interaction evaluated with A x B x Subjects term	$A \times B$ $\sigma_{\epsilon}^2 + \sigma_{\alpha}^2$
	$A \times B \times S$

Effect	$\mathbf{E}(\text{Mean Square})$	F
S	$\sigma_{\epsilon}^2 + ab\sigma_{\pi}^2$	
A	$\sigma_{\epsilon}^2 + b\sigma_{\alpha\pi}^2 + nb\frac{\sum_j \alpha_j^2}{a-1}$	$\frac{MS_A}{MS_{A \times S}}$
$A \times S$	$\sigma_{\epsilon}^2 + b \sigma_{\alpha \pi}^2$	
В	$\sigma_{\epsilon}^2 + a\sigma_{\beta\pi}^2 + na\frac{\sum_k \beta_j^2}{b-1}$	$\frac{MS_B}{MS_{B\times S}}$
$B \times S$	$\sigma_{\epsilon}^2 + a \sigma_{\beta\pi}^2$	
$A \times B$	$\sigma_{\epsilon}^2 + \sigma_{\alpha\beta\pi}^2 + n \frac{\sum_j \sum_k (\alpha\beta)_{jk}^2}{(a-1)(b-1)}$	$\frac{MS_{A \times B}}{MS_{A \times B \times S}}$
$A \times B \times S$	$\sigma_{\epsilon}^2 + \sigma_{lphaeta\pi}^2$	

R example

- Effects of noise (distractors) and stimulus orientation on letter discrimination
- 2 (noise) x 3 (orientation) within-subject factorial design

```
> load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/rtData-mw12-1.rda"))
> sapply(rt.wide,class)
     subj absent.a0 absent.a4 absent.a8 present.a0 present.a4 present.a8
```

"factor" "numeric" "numeric" "numeric" "numeric" "numeric" > summary(rt.long) subj noise angle rt : 6 absent :30 a0:20 Min. : 284 s1 s10 : 6 present:30 a4:20 1st Qu.: 459 s2 : 6 a8:20 Median : 571 Mean : 588 s3 : 6 s4 : 6 3rd Qu.: 686 s5 : 6 Max. :1000

R example

- > options(width=80,digits=4)
- > options(contrasts=c("contr.sum","contr.poly"))

> # following model is incorrect

> rt.aov.00 <- aov(rt ~ 1+Error(subj/(angle*noise)),</pre>

+

data=rt.long) # no fixed effects!

R example

+

+

(Other):24

> options(width=80,digits=4)

```
> options(contrasts=c("contr.sum","contr.poly"))
```

```
> # the next 2 models are equivalent:
```

```
> rt.aov.01 <- aov(rt ~ angle*noise+Error(subj/(angle*noise)),</pre>
```

```
data=rt.long)
+
```

```
> # rt.aov.01b <- aov(rt ~ angle*noise,</pre>
```

```
+ Error(subj/(angle+noise+angle:noise)),
```

```
data=rt.long)
```

R example

```
> rt.aov.01 <- aov(rt ~ angle*noise+Error(subj/(angle*noise)),data=rt.long)</pre>
> summary(rt.aov.01)
Error: subi
```

```
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 9 344423 38269
```

Error: subj:angle	
Df Sum Sq Mean Sq F value Pr(>F)	assumes sphericity
angle 2 225422 112711 7.79 0.0036 **	
Residuals 18 260280 14460	
Error: subj:noise	
Df Sum Sq Mean Sq F value Pr(>F)	
noise 1 234625 234625 15.7 0.0033 **	
Residuals 9 134551 14950	
Error: subj:angle:noise	
Df Sum Sq Mean Sq F value Pr(>F)	assumes suborisity
angle:noise 2 187983 93992 7.51 0.0043 **	assumes sphericity
Residuals 18 225402 12522	

R example (aov_car)

> '	lił	ora	ry(af	ex)
-----	-----	-----	-----	----	-----

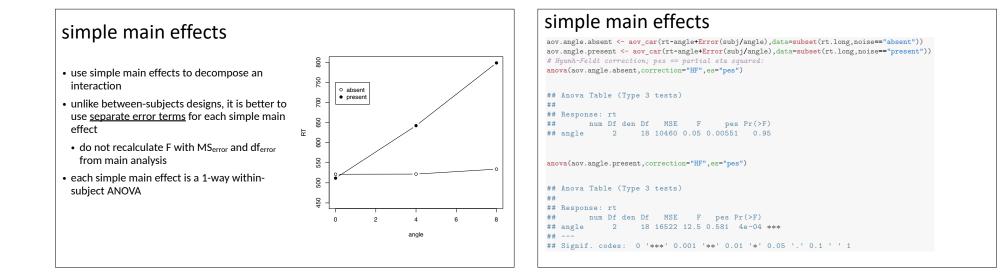
> rt.aov.02 <-aov_car(rt ~ angle*noise+Error(subj/(angle*noise)),data=rt.long) > summary(rt.aov.02)


Univariate T	ype III Repe	eated-	Measures	ANOVA A	ssuming	g Spheric	ity
	Sum Sq num	Df Er	ror SS de	n Df F	value	Pr(>F)	
(Intercept)	20765813	1	344423	9	542.62	2.4e-09	***
angle	225423	2	260280	18	7.79	0.0036	**
noise	234625	1	134551	9	15.69	0.0033	**
angle:noise	187983	2	225402	18	7.51	0.0043	**

R example (aov_car)

> rt.aov.02	<-aov_car(r	t ~ a	ingle*noise	+Error	(subj/(d	angle*no	ise))
> summary(rt	t.aov.02)						
Univariate 1	Type III Repe						city
(Talaasa)	Sum Sq num						***
(Intercept)	20765813	1	344423	10	542.62	2.4e-09	**
noise	225423 234625	1	134551	10	15 69	0.0033	**
angle:noise	187983	2	225402	18	7.51	0.0043	**
Mauchly 1	Tests for		-				
	lest s	tatı	istic p-	value	e		
angle			0.690	0.22	27		
angle:noi	ise		0.639	0.10	67		
	<u> </u>						
Greenhous	se-Geisse		2		dt Cor	rectio	ons
	GG eps	s Pr	^(>F[GG])			
	0.76						
angle:noi	ise 0.73	5	0.010	3 *			
	HF ep:	s Pr	^(>F[HF])			
angle	0.888	0	0.00536	9			
angle:noi	ise 0.843	1	0.00717	7			

Strength of Association & Effect Sizeomega-squared $\hat{\omega}^2 = \frac{df_{effect}(MS_{effect} - MS_{effect \times S})}{SS_{effect} + SS_{effect \times S} + SS_S + MS_S}$ Cohen's f $\hat{f} = \sqrt{\frac{\hat{\omega}_{effect}^2}{1 - \hat{\omega}_{effect}^2}}$


<pre>ibrary(effed</pre>	ctsize)		
mega_squared	d(rt.aov.0	2)	
# # Effect S	ize for AN	OVA (Type III)	
#			
# Parameter	Omega2	(partial)	95% CI
#			
# angle	1	0.23 [0.	00, 1.00]
# noise	1	0.29 [0.	00, 1.00]
		0.20 [0.	00 1 00]
<pre># angle:nois</pre>	el	0.20 [0.	

Strength of Association & Effect Size

cohens_f(rt.aov.02)

## ##	# Effect Siz	ze for ANOVA	(Type III)	
	Parameter	Cohen's f	(partial)	95% CI
##				
##	angle	1	0.93 [0.41,	Inf]
##	noise	1	1.32 [0.55,	Inf]
## ##	angle:noise	1	0.91 [0.39,	Inf]
	- One-sided	CIs: upper	bound fixed at (Inf).	

linear contrasts

- similar to procedures used with 1-way within-subjects ANOVA
- use contrast weights to create composite scores
- converts multivariate analysis to univariate analysis
- use t test to evaluate null hypothesis

linear contrasts example

evaluate linear trend of RT across angle on entire data set (i.e., ignoring noise)

```
rt.mat <- as.matrix(rt.wide[,2:7])
rt.mat[1:2,]
## absent.a0 absent.a4 absent.a8 present.a0 present.a4 present.a8
## 1 657 446 461 671 474 903
## 2 450 448 484 284 562 585
lin.C <- c(-1,0,1,-1,0,1)
rt.lin <- rt.mat %*% lin.C</pre>
```

linear contrasts example

evaluate linear trend of RT across angle on entire data set (i.e., ignoring noise)

```
lin.C <- c(-1,0,1,-1,0,1)
rt.lin <- rt.mat %*% lin.C
t.test(rt.lin)

##
## One Sample t-test
##
## data: rt.lin
## t = 3.5, df = 9, p-value = 0.007
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 104.9 494.1
## sample estimates:
## mean of x
## 299.5</pre>
```

```
Evaluate linear trend of RT across angle separately at each level of noise

rt.mat[1,] # inspect column names

## absent.a0 absent.a4 absent.a8 present.a0 present.a4 present.a8
## 657 446 461 671 474 903

# note the contrast weights in next 2 lines:
rt.absent.lin <- rt.mat %*% c(-1,0,1,0,0,0)
rt.present.lin <- rt.mat %*% c(0,0,0,-1,0,1)</pre>
```

linear contrasts example

evaluate linear trend of RT across angle separately at each level of noise

```
# note the contrast weights in next 2 lines:
rt.absent.lin <- rt.mat %*% c(-1,0,1,0,0,0)
rt.present.lin <- rt.mat %*% c(0,0,0,-1,0,1)
t.test(rt.absent.lin)
```

```
##
## One Sample t-test
##
## data: rt.absent.lin
## t = 0.32, df = 9, p-value = 0.8
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -77.93 103.33
## sample estimates:
## mean of x
## 12.7
```

linear contrasts example

evaluate linear trend of RT across angle separately at each level of noise

```
# note the contrast weights in next 2 lines:
rt.absent.lin <- rt.mat %*% c(-1,0,1,0,0,0)
rt.present.lin <- rt.mat %*% c(0,0,0,-1,0,1)</pre>
```

t.test(rt.present.lin)

```
##
## One Sample t-test
##
## data: rt.present.lin
## t = 4.8, df = 9, p-value = 0.001
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 151.7 421.9
## sample estimates:
## mean of x
## 286.8
```

linear contrasts example

does linear trend of RT across angle <u>differ</u> across noise levels? weights = Ψ (-1,0,1,0,0,0) - Ψ (0,0,0,-1,0,1) = Ψ (-1,0,1,1,0,-1)

myC <- c(-1,0,1,1,0,-1)
rt.lin.x.noise <- rt.mat %*% myC
t.test(rt.lin.x.noise)</pre>

contrast weights (linear trend x noise interaction) composite scores 2-tailed t test

```
##
## One Sample t-test
##
## data: rt.lin.x.noise
## t = -5.1, df = 9, p-value = 7e-04 noise x linear trend interaction is significant
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -396.8 -151.4
## sample estimates:
## mean of x
## -274.1
```

linear contrasts example

using ANOVA to evaluate linear trend x noise interaction

```
N <- length(rt.absent.lin) # number of subjects
linTrend <- c(rt.pres.lin,rt.absent.lin)</pre>
                                                      create data frame of
nz <- as.factor(x=rep(c("present","absent"),each=N))</pre>
                                                     composite/trend scores
sid <- factor(x=rep(1:N,times=2),label="s")</pre>
                                                      for noise present &
linTrend.df <- data.frame(sid,nz,linTrend)</pre>
                                                      absent conditions
summary(linTrend.df)
##
        sid
                  nz
                            linTrend
## s1 :2 absent :10 Min. :-196
## s2 :2 present:10 1st Qu.: 19
## s3 :2
                          Median : 104
## s4
         :2
                           Mean : 150
## s5
        :2
                          3rd Qu.: 249
## s6
       :2
                          Max. : 575
## (Other):8
```

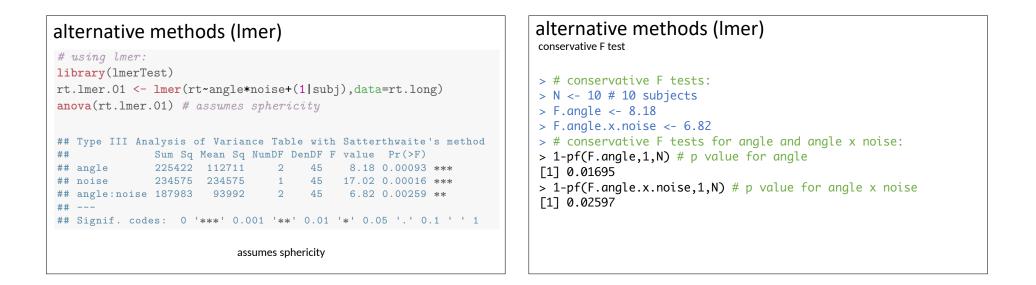
linear contrasts example	line
evaluate the effect of noise on composite scores with 1-way within-subjects ANOVA	lib
<pre>options(contrasts=c("contr.sum","contr.poly"))</pre>	rt.
<pre>linTrend.aov.01 <- aov_car(linTrend~nz+Error(sid/nz),data=linTrend.df) summary(linTrend.aov.01)</pre>	lin
##	#
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity ##	con
## Sum Sq num Df Error SS den Df F value Pr(>F)	
## (Intercept) 448501 1 333077 9 12.1 0.00693 ** what do these	##
## nz 375654 1 132496 9 25.5 0.00069 *** effects mean?	##
## ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	## ##
	##

binear contrasts (emmeans) verticate linear trend of RT across angle on entire data set (i.e., ignoring noise) library(emmeans) rt.emm <- emmeans(rt.aov.02, specs="angle") lin.C <- c(-1,0,1) # trend weights # linear trend ignoring noise contrast(rt.emm,method=list(linear=lin.C)) ## contrast estimate SE df t.ratio p.value ## linear 150 43 9 3.481 0.0069 ## ## Results are averaged over the levels of: noise</pre>

linear contrasts (emmeans)

evaluate linear trend of RT across angle separately at each level of noise

```
# linear trend separately for each noise
rt.emm.2 <- emmeans(rt.aov.02,specs="angle",by="noise")
contrast(rt.emm.2,method=list(linear=lin.C))</pre>
```


```
## noise = absent:
## contrast estimate SE df t.ratio p.value
## linear 12.7 40.1 9 0.317 0.7585
##
## noise = present:
## contrast estimate SE df t.ratio p.value
## linear 286.8 59.7 9 4.801 0.0010
```

linear contrasts (emmeans)

linear trend x noise interaction

linear trend x noise interaction: contrast(rt.emm.2,interaction=list(angle=list(lin.C),noise=list(c(-1,1))),by=NULL)

angle_custom noise_custom estimate SE df t.ratio p.value
c(-1, 0, 1) c(-1, 1) 274 54.3 9 5.051 0.0007

alternative methods (Imer)
> library(car)
<pre>> Anova(rt.lmer.01,type="III")</pre>
Analysis of Deviance Table (Type III Wald chisquare tests)
Response: rt
Chisq Df Pr(>Chisq)
(Intercept) 542.6 1 < 2e-16 ***
angle 16.4 2 0.00028 ***
noise 17.0 1 3.7e-05 ***
angle:noise 13.6 2 0.00109 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
5

•

. ..

.

<pre>library(effectsize) omega_squared(rt.lmer.01) ## # Effect Size for ANOVA (Type III) ## ## Parameter Omega2 (partial) 95% CI ##</pre>	association strength (Imer)
<pre>## ## angle 0.23 [0.06, 1.00] ## noise 0.25 [0.09, 1.00] ## angle:noise 0.20 [0.04, 1.00] ##</pre>	<pre>omega_squared(rt.lmer.01) ## # Effect Size for ANOVA (Type III) ##</pre>
	<pre>## ## angle 0.23 [0.06, 1.00] ## noise 0.25 [0.09, 1.00] ## angle:noise 0.20 [0.04, 1.00] ##</pre>

effect siz	e (Imer)
C11CCC 512	

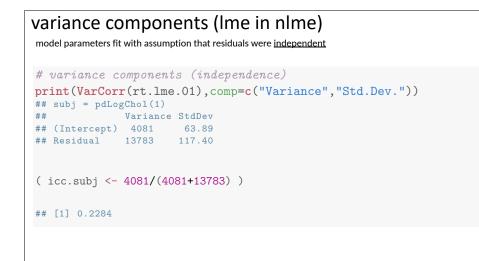
fixed effects

cohens_f(rt.lr	ner.01)		
## # Effect Si: ##	ze for ANOVA (Typ	e III)	
## Parameter	Cohen's f (par	tial)	95% CI
##			
## angle		0.60 [0.31,	Inf]
## noise		0.61 [0.34,	Inf]
## angle:noise ##	I	0.55 [0.25,	[Inf]
## - One-sided	CIs: upper bound	fixed at (Inf).	

variance components (Imer)

```
> # random components
> ranova(rt.lmer.01) # anova-like table
```

ANOVA-like table for random-effects: Single term deletions


Model: rt ~ angle + noise + (1 | subj) + angle:noise npar logLik AIC LRT Df Pr(>Chisq) <none> 8 -350 715 (1 | subj) 7 -352 718 4.81 1 0.028 *

variance components (Imer)	alternative methods (Ime in nIme) models differ in assumed correlation structure in residuals
<pre>> # variance components > print(VarCorr(rt.lmer.01),comp=c("Variance","Std.Dev.")) Groups Name Variance Std.Dev. subj (Intercept) 4081 63.9 Residual 13783 117.4 > # association strength > library(performance) > icc(rt.lmer.01,by_group = T) # ICC by Group Group ICC </pre>	<pre>> # using lme in nlme > library(nlme) > # assumes independence: > rt.lme.01 <- lme(rt~angle*noise,random=~1 subj, + data=rt.long) > # assumes sphericity: > rt.lme.02 <- lme(rt~angle*noise,random=~1 subj, + data=rt.long, + correlation=corCompSymm(value=0.3,form=~1 subj)) > # does not assume sphericity: > rt.lme.03 <- lme(rt~angle*noise,random=~1 subj, + data=rt.long, + correlation=corSymm(form=~1 subj))</pre>

alternative methods (Ime in nIme) models differ in assumed correlation structure in residuals	alternative methods (Ime in nIme)
<pre>> # no significant difference in fit: > anova(rt.lme.01,rt.lme.02,rt.lme.03)</pre>	<pre># fixed effects for model 1 anova(rt.lme.01) ## numDF denDF F-value p-value ## (Intercept) 1 45 542.6 <.0001 ## angle 2 45 8.2 0.0009 ## noise 1 45 17.0 0.0002 ## angle:noise 2 45 6.8 0.0026</pre>

	ects association st		(lme in n	lme)	
ome	ega_squared	(rt.lme.01)		
## ##		Omega2	VA (partial)		I
##			0.23 0.25	[0.06, 1.00]	
##	angle:noise		0.20]
##	- One-sided	CIs: uppe	r bound fixe	d at (1).	

Iternative methods (Ime	in nlme)	
<pre>cohens_f(rt.lme.01)</pre>		
## # Effect Size for ANOVA ## ## Parameter Cohen's f (par	tial)	95% CI
## noise ## angle:noise ##	0.60 [0.31, 0.62 [0.34, 0.55 [0.25,	Inf]
<pre>## - One-sided CIs: upper bound</pre>	fixed at (Inf).	

variance components (Ime in nIme)

model parameters fit with compound symmetric variance-covariance matrix for residuals

```
# variance components (compound symmetry)
print(VarCorr(rt.lme.02),comp=c("Variance","Std.Dev."))
```

```
## subj = pdLogChol(1)
## Variance StdDev
## (Intercept) 1142 33.79
## Residual 16722 129.31
```

(icc.subj <- 1142/(1142+16722))

```
## [1] 0.06393
```

split-plot (between-within, mixed) designs

- split-plot designs have between-subject & within-subject factors
- analyzed the same way as within-subjects design except we include between-subjects factors in multivariate linear model

split-plot designs

- > library(afex)
- > options(contrasts=c("contr.sum","contr.poly"))
- > rtAge.aov.02 <- aov_car(rt ~ group*angle + Error(subj/angle),data=rtVisual)</pre>
- > summary(rtAge.aov.02)

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity)

```
Sum Sq num Df Error SS den Df F value Pr(>F)(Intercept) 9610000110022210958.872.9e-11***group160441100222101.600.234angle288502114311202.520.105group:angle507722114311204.440.025------------5ignif. codes:0 '***' 0.01 '*' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

split-plot designs	split-plot designs between-group portion is equivalent to 1-way ANOVA on average scores for each S
Mauchly Tests for Sphericity applie Test statistic p-value includ factor (i. factor (i.	<pre>## ## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity ## ## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity ## ## Sum Sq num Df Error SS den Df F value Pr(>F) ## (Intercept) 9610000 1 100222 10 958.87 2.9e-11 *** ## group 16044 1 100222 10 1.60 0.234 ## angle 28850 2 114311 20 2.52 0.105 ## group:angle 50772 2 114311 20 4.44 0.025 * ## ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
Greenhouse-Geisser & Huynh-Feldt Corrections GG eps Pr(>F[GG]) angle 0.607 0.135 group:angle 0.607 0.051 . HF eps Pr(>F[HF]) angle 0.6468 0.13155 group:angle 0.6468 0.04726	<pre>rt.mat <- rtVisual.wide[,3:5] # extract rt measures rtVisual.wide\$rtAvg <- rowMeans(rt.mat) # calculate average summary(aov(rtAvg~group,data=rtVisual.wide)) ## Df Sum Sq Mean Sq F value Pr(>F) ## group 1 5348 5348 1.6 0.23 ## Residuals 10 33407 3341</pre>

split-plot designs within-group parts of ANOVA use error term that is average of error te	rms in separate 1-way ANOVAs	linear contrasts
## Sum Sq num Df Error SS den Df F value Pr(>F) ## (Intercept) 9610000 1 100222 10 958.87 2.9e-11 ** ## group 16044 1 100222 10 1.60 0.234 ## angle 28850 2 114311 20 2.52 0.105 ## group:angle 50772 2 114311 20 4.44 0.025 *	**	 on between-subject variable: - calculate mean score for each subject
<pre>summary(rt.young)[[2]] ## Df Sum Sq Mean Sq F value Pr(>F) ## angle 2 72078 36039 9.71 0.0045 ** ## Residuals 10 37122 3712</pre>	SS _{error} = 114311 = 37122 + 77189 MS _{error} = 5716 = (3712+7719)/2	 apply contrast weights to mean scores as in a 1-way design on within-subject variable: use contrast weights to convert measures to composite scores
<pre>summary(rt.old)[[2]] ## Df Sum Sq Mean Sq F value Pr(>F) ## angle 2 7544 3772 0.49 0.63 ## Residuals 10 77189 7719</pre>		- use t-test or anova to determine if scores differ across groups (i.e., contrast x group interaction)

linear contrasts example test of overall contrast ignoring group differences	linear contrasts example	
<pre>> y.mat<-as.matrix(myData[,2:4]) > lin.C <- c(-1,0,1) > myData\$lin.scores <- y.mat $**$ lin.C > myData group a1 a2 a3 lin.scores 1 young 50 47 51 1 2 young 41 57 43 2 4 young 46 66 47 1 5 young 45 61 38 -7 6 young 45 57 53 8 7 old 48 39 38 -10 8 old 55 72 54 -1 9 old 51 44 51 0 10 old 53 65 53 0 11 old 68 58 62 -6 12 old 65 37 55 -10</pre> mean contrast (linear trend) does not differ significantly from zero > t.test(myData\$lin.scores) > t.test(myData\$lin.scores) 0 ne Sample t-test data: myData\$lin.scores t t = -1.301, df = 11, p-value = 0.2199 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: -5.384 1.384 sample estimates: mean of x 11 old 68 58 62 -6 12 old 65 37 55 -10	<pre>> library(emmeans) > # create aov_car object: > rtAge.aov.10 <- aov_car(rt ~ group*angle + Error(subj/angle), + data=rtVisual) > linTrendWeights <- c(-1,0,1) > # linear trend ignoring group > angle.emm <- emmeans(rtAge.aov.10,specs="angle") > contrast(angle.emm,method=list(linTrendWeights)) contrast estimate SE df t.ratio p.value c(-1, 0, 1) -20 14.1 10 -1.423 0.1851 Results are averaged over the levels of: group</pre>	

11 old 68 58 62

12 old 65 37 55

-6

-10

linear contrasts example evaluating group differences

- > y.mat<-as.matrix(myData[,2:4])</pre>
- > lin.C <- c(-1,0,1)
- > myData\$lin.scores <- y.mat %*% lin.C</pre>
- > myData

-	llyDala		contrast (linear trend) does not differ significantly between groups
1 2 3 4 5 6 7 8 9 10 11	group a1 a2 young 50 47 young 41 57 young 42 63 young 45 61 young 45 57 old 48 39 old 55 72 old 51 44 old 53 65	43 2 40 -2 47 1 38 -7 53 8 38 -10 54 -1 51 0 53 0	<pre>contrast (linear trend) does not differ significantly between groups > t.test(lin.scores~group,data=myData) Welch Two Sample t-test data: lin.scores by group t = 1.779, df = 9.994, p-value = 0.1056 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -1.263 11.263 sample estimates: mean in group young mean in group old</pre>
12	old 65 37	55 -10	

linear contrasts example evaluating group differences > y.mat<-as.matrix(myData[,2:4])</pre> > lin.C <- c(-1,0,1) > myData\$lin.scores <- y.mat %*% lin.C</pre> > myData contrast (linear trend) does not differ significantly between groups group a1 a2 a3 lin.scores > t.test(lin.scores~group,data=myData) 1 young 50 47 51 1 2 young 41 57 43 2 Welch Two Sample t-test data: lin.scores by group 3 young 42 63 40 -2 t = 1.779, df = 9.994, p-value = 0.1056 4 young 46 66 47 1 alternative hypothesis: true difference in means is not equal to 0 5 young 45 61 38 -7 95 percent confidence interval: 6 young 45 57 53 8 -1.263 11.263 7 old 48 39 38 -10 sample estimates: 8 old 55 72 54 -1 mean in group young mean in group old 0 9 old 51 44 51 0.5 -4.5 10 old 53 65 53 0

linear contrasts example evaluating group differences with emmeans

```
> # linear trend for each group
> angle.emm.2 <- emmeans(rtAge.aov.10,specs="angle",by="group")</pre>
> contrast(angle.emm.2,method=list(linTrendWeights))
group = young:
 contrast estimate SE df t.ratio p.value
                  5 19.9 10 0.252 0.8065
 c(-1, 0, 1)
group = old:
 contrast estimate SE df t.ratio p.value
                -45 19.9 10 -2.264 0.0470
 c(-1, 0, 1)
> # linear trend x group interaction
> contrast(angle.emm.2,interaction=c("poly","consec"),by=NULL)
 angle_poly group_consec estimate SE df t.ratio p.value
 linear
         old - young
                           -50 28.1 10 -1.779 0.1056
 quadratic old - young
                            307 143.2 10 2.142 0.0578
```