# PSYCH 710

## Random, Mixed, & Nested ANOVA

Prof. Patrick Bennett

### fixed vs. random factors

- fixed factor: levels of factor would be the same in replication
- random factor: levels were selected randomly from large set & would vary across replications
- introduces another source of variance that must be accounted for in our analyses

# 1-Way Random ANOVA

# 1-way random ANOVA

- alphas are assumed to be <u>random variables</u> selected from zero-mean, Normal distribution
- variance of scores is the sum of alpha & error variance

Full & Reduced Models:

$$Y_{ij} = \mu + \alpha_j + \epsilon_{ij}$$
$$Y_{ij} = \mu + \epsilon_{ij}$$

$$\begin{split} \mathrm{Var}(Y_{ij}) &= \sigma_{\alpha}^2 + \sigma_{\epsilon}^2 \\ \mathrm{H0}: \ \sigma_{\alpha}^2 &= 0 \\ \mathrm{H1}: \ \sigma_{\alpha}^2 &> 0 \end{split}$$



 $\operatorname{Var}(Y_{ij}) = \sigma_{\alpha}^2 + \sigma_{\epsilon}^2$ 

 $\hat{\sigma}_{lpha}^2 = (1/n) imes (\mathrm{MS}_{BG} - \mathrm{MS}_{WG})$  assumes equal n per group

(if  $\hat{\sigma}_{\alpha}^2 < 0$  then set  $\hat{\sigma}_{\alpha}^2$  to zero)



Strength of association  
intraclass correlation ICC  

$$\rho_I = \frac{\sigma_{\alpha}^2}{\sigma_{\alpha}^2 + \sigma_{\epsilon}^2}$$

$$\hat{\rho}_I = \frac{MS_{BG} - MS_{WG}}{MS_{BG} + (n-1)MS_{WG}} \qquad \hat{\rho}_I = \frac{F_{BG} - 1}{(n-1) + F_{BG}}$$



#### Random ANOVA & Variance Components (Dyestuff)

The Dyestuff data frame provides the yield of dyestuff (Naphthalene Black 12B) from 5 different preparations from each of 6 different batches of an intermediate product (H-acid). The Dyestuff2 data were generated data in the same structure but with a large residual variance relative to the batch variance.

```
> MS.batch <- 11272
> MS.error <- 2451
> var.comp.error <- MS.error</pre>
> n <- 5 # observations per cell</pre>
 ( var.comp.batch <- (MS.batch - MS.error)/n )</pre>
[1] 1764.2
> sqrt(var(Dyestuff$Yield)) # SD of sample yield
[1] 63.02367
> sqrt(var.comp.batch + var.comp.error) # estimated pop SD of yield
[1] 64.92457
> # unbiased estimate of variance ratio (theta)
> m <- 6 * (n-1) / (6 * (n-1) - 2)
> (11272 - m*2451) / (m*n*2451)
[1] 0.6431
> # association strength (ICC intraclass correlation):
> var.comp.batch / (var.comp.batch + var.comp.error)
[1] 0.4185
```

Random ANOVA & Variance Components (Dyestuff) Imer in ImerTest package > options(contrasts=c("contr.sum","contr.poly")) > library(lmerTest) > dye.lme <- lmer(Yield~(1|Batch),data=Dyestuff)</pre> > ranova(dye.lme) Model: Yield ~ (1 | Batch)npar logLik AIC LRT Df Pr(>Chisq) 3 -160 326 <none> 2 -163 330 6.37 1 0.012 \* (1 | Batch) > VarCorr(dye.lme) Groups Name Std.Dev. # variance components (Intercept) 42.0 Batch Residual 49.5 > ( ICC <- 42^2 / (42^2 + 49.5^2) ) # association strength F17 0.4186



#### 2-way mixed ANOVA

(A fixed; B random)

 $Y_{ijk} = \mu + \alpha_j + \beta_k + (\alpha\beta)_{jk} + \epsilon_{ijk}$ 

- A is fixed: alphas are constrained (sum-to-zero)
- B is random: levels selected randomly
- distributed normally with  $\mu=0$  and  $\mathrm{var}=\sigma_{\!\beta}^2$
- AxB interaction effects are random
- \_ distributed normally with  $\mu = 0$  and var  $= \sigma_{(\alpha\beta)}^2$
- sum of interaction effects across levels of fixed factor is zero
- sum of interaction effects within levels of fixed factor may not be zero

# Effect of randomly sampling levels of a factor

- A = Therapy Mode (fixed)
- all α's equal zero
- B = Clinical Trainee (random)
- all  $\beta$ 's equal zero
- AxB interaction effects  $(\alpha,\beta)$  are <u>not</u> all zero
- Across all possible levels, <u>sum</u> of (α,β)'s in each column & row = 0
- When B is sampled, sum of (α,β)'s across levels of B may not be zero
- AxB interaction leaks into main effect of A (i.e., the fixed factor)

| . Population Mean                       | s for T | hree | e Th | erap | y M  | ode. | s an | d foi | - the | Ent   | ire i | Pop  | ulati  | on oj | ( Tro | ine  | 25 |   |     |
|-----------------------------------------|---------|------|------|------|------|------|------|-------|-------|-------|-------|------|--------|-------|-------|------|----|---|-----|
|                                         |         |      |      |      |      |      |      | Clin  | nica  | l Tre | nine  | 2    | in a s |       | 200   | - 16 | _  |   |     |
| Therapy Mode                            | a       | b    | с    | d    | е    | f    | g    | h     | i     | j.    | k     | I    | m      | n     | 0     | р    | q  | r | Men |
| sychodynamic                            | 7       | 6    | 5    | 7    | 6    | 5    | 4    | 4     | 4     | 1     | 2     | 3    | 4      | 4     | 4     | 1    | 2  | 3 | 4   |
| Behavioral                              | 4       | 4    | 4    | 1    | 2    | 3    | 7    | 6     | 5     | 7     | 6     | 5    | 1      | 2     | 3     | 4    | 4  | 4 | 1   |
| Rogerian                                | 1       | 2    | 3    | 4    | 4    | 4    | 1    | 2     | 3     | 4     | 4     | 4    | 7      | 6     | 5     | 7    | 6  | 5 | 4   |
| Mean                                    | 4       | 4    | 4    | 4    | 4    | 4    | 4    | 4     | 4     | 4     | 4     | 4    | 4      | 4     | 4     | 4    | 4  | 4 | 4   |
| I. Population Mea                       | ns for  | Thre | e Ti | hera | py I | Aod  | es a | nd fe | or a  | Sam   | ple   | of T | rain   | ees   |       |      |    |   |     |
| Section 1993                            | (       | Iini | ical | Trai | nee  |      |      |       | C     |       |       |      |        | _     |       |      |    |   |     |
| Therapy Mode                            | g       |      | k    |      | r    | 1    | Mean | 7     |       |       |       |      |        |       |       |      |    |   |     |
|                                         | 4       |      | 2    |      | 3    |      | 3.00 |       |       |       |       |      |        |       |       |      |    |   |     |
| Psychodynamic                           |         |      | 6    |      | 4    |      | 5.67 |       |       |       |       |      |        |       |       |      |    |   |     |
| Psychodynamic<br>Behavioral             | 7       |      |      |      | 5    |      | 3.33 |       |       |       |       |      |        |       |       |      |    |   |     |
| Psychodynamic<br>Behavioral<br>Rogerian | 7       |      | 4    |      |      |      |      |       |       |       |       |      |        |       |       |      |    |   |     |

TABLE 10.1

Maxwell, Delaney & Kelly (2018)



| Source       | $\xi(MS)$ A fixed; B random                                                         |
|--------------|-------------------------------------------------------------------------------------|
| A            | $\sigma_{\epsilon}^2 + n\sigma_{(\alpha\beta)}^2 + bn\sum_{j=1}^a \alpha_j^2/(a-1)$ |
| B            | $\sigma_{\epsilon}^2 + an\sigma_{\beta}^2$                                          |
| $A \times B$ | $\sigma_{\epsilon}^2 + n\sigma_{(\alpha\beta)}^2$                                   |
| Residuals    | $\sigma_{\epsilon}^2$                                                               |







| Example (ACT Experiment)                                                                                                 | )                                                                                                                                                                         | Example (ACT Experiment)<br>mixed-effect ANOVA with Imer                                                                                                                                                                                                                                 |                                     |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|
| <pre>&gt; options(contrasts=c("contr.sum", "contr.poly"))<br/>&gt; summary(aov(score~study+school+study:school,dat</pre> | <ul> <li>ta=mw.act))</li> <li>recalculate F &amp; p for fixed effect</li> <li>very small variance components</li> <li>this result may be interesting/important</li> </ul> | <pre>&gt; require(lmerTest) &gt; act.lme.01 &lt;- lmer(score ~ study + (llschool) + (llstudy:school) &gt; anova(act.lme.01) Type III Analysis of Variance Table with Satterthwaite's method     Sum Sq Mean Sq NumDF DenDF F value Pr(&gt;F) study 243.84 243.84 1 3 13.5 0.0349 *</pre> | ,data=mw.act)<br>Fixed Effect ANOVA |  |  |  |  |

| Example (ACT Experiment)<br>mixed-effect ANOVA with Imer                                                                                                                                                                                                               |                                                              | Example (ACT Experiment)<br>mixed-effect ANOVA with Imer                                                                                                                                                       |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| <pre>&gt; require(lmerTest) &gt; act.lme.01 &lt;- lmer(score ~ study + (1 school) + (1 study:school),data=mw.ac &gt; VarCorr(school.lme) # var components as std dev Groups Name Std.Dev. study:school (Intercept) 1.312 school (Intercept) 0.817 Residual 4.250</pre> | Variance Components                                          | <pre>&gt; # association strength for random effects &gt; library(performance) &gt; icc(school.lme,by_group=T) # ICC by Group Group   ICC</pre>                                                                 |  |  |  |  |
| <pre>&gt; ranova(school.lme) # significance tests<br/>ANOVA-like table for random-effects: Single term deletions<br/>Model:<br/>score ~ study + (1   school) + (1   study:school)</pre>                                                                                | dropping random effects does<br>NOT change fit significantly | <pre>&gt; # association strength for fixed effects<br/>&gt; library(effectsize)<br/>&gt; omega_squared(school.lme)<br/># Effect Size for ANOVA (Type III)<br/>Parameter   Omega2 (partial)   95% CI<br/></pre> |  |  |  |  |





| 2-way rando<br>(A & B random)                                                                                                                                                                                                                                  | om ANOVA                                                                                                                                                                                                                                                                                                                           | $Y_{ijk} = \mu + \alpha_j + \beta_k + (\alpha\beta)_{jk} + \epsilon_{ijk}$ |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| <ul> <li>A &amp; B are random:         <ul> <li>distributed normally with</li> <li>interaction effects are                 <ul> <li>distributed normally with</li> <li>main effects evaluate</li> <li>interaction evaluated</li> </ul> </li> </ul> </li> </ul> | μ=0 and var=σ² <sub>β</sub><br>e random<br>μ=0 and var=σ² <sub>(αβ)</sub><br>d by comparing MS <sub>A</sub> & MS <sub>B</sub> to M<br>by comparing MS <sub>AxB</sub> to MS <sub>residua</sub>                                                                                                                                      | 15 <sub>AXB</sub><br>als                                                   |  |
| $Source$ $A$ $B$ $A \times B$ Residuals                                                                                                                                                                                                                        | $ \begin{array}{c} \xi(MS) \ A \ \& \ B \ \mathrm{random} \\ \sigma_{\epsilon}^{2} + n\sigma_{(\alpha\beta)}^{2} + bn\sigma_{\alpha}^{2} \\ \sigma_{\epsilon}^{2} + n\sigma_{(\alpha\beta)}^{2} + an\sigma_{\beta}^{2} \\ \hline \sigma_{\epsilon}^{2} + n\sigma_{(\alpha\beta)}^{2} \\ \hline \sigma_{\epsilon}^{2} \end{array} $ | H0: $\sigma_{(\alpha\beta)}^2 = 0$<br>H1: $\sigma_{(\alpha\beta)}^2 > 0$   |  |

strength of associationrandom 2-way ANOVA
$$\rho_{I:A,partial} = \frac{\sigma_{\alpha}^2}{\sigma_{\alpha}^2 + \sigma_{e}^2}$$
 $\sigma_{\alpha}^2 + \sigma_{e}^2$  $\sigma_{\alpha}^2 + \sigma_{e}^2$  $\rho_{I:B,partial} = \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_{e}^2}$  $\rho_{I:A,partial} = \frac{\sigma_{\beta}^2}{\sigma_{\beta}^2 + \sigma_{e}^2}$  $\rho_{I:A,B,partial} = \frac{\sigma_{(\alpha\beta)}^2}{\sigma_{(\alpha\beta)}^2 + \sigma_{e}^2}$  $\sigma_{e}^2 = MS_R$ 



| ANOVA variance                                    | e (AC            | ents  | zxper      | iment      | .)        |          |           |
|---------------------------------------------------|------------------|-------|------------|------------|-----------|----------|-----------|
| <pre>&gt; library(VCA) &gt; anovaVCA(score)</pre> | re ~ 1 + s       | stud  | y*school,D | ata=mw.act |           |          |           |
| Result Variance                                   | e Componer       | nt Ai | nalysis:   |            |           |          |           |
| Name                                              | DF               | SS    | MS         | VC         | %Total    | SD       | CV[%]     |
| 2 study                                           | 1                | 360   | 360        | 16.666667  | 44.903458 | 4.082483 | 17.010345 |
| 3 school                                          | 3                | 100   | 33.333333  | 0.666667   | 1.796138  | 0.816497 | 3.402069  |
| 4 study:school                                    | 3                | 80    | 26.666667  | 1.720833   | 4.636282  | 1.311805 | 5.465856  |
| Mean: 24 (N = 4<br>Experimental D                 | 40)<br>esign: ba | Lance | ed   Met   | hod: ANOVA |           |          |           |





### Nested Experimental Design

- Factor B is nested within factor A
- if each level of B occurs within only one level of A
- Nesting often is a result of sampling strategy

Table 4: Example of a nested design.

|       | $b_1$ | $b_2$ | $b_3$ | $b_4$ | $b_5$ | $b_6$ |
|-------|-------|-------|-------|-------|-------|-------|
| $a_1$ | 6     | 6     | 6     | х     | х     | х     |
| $a_2$ | x     | х     | х     | 6     | 6     | 6     |

### Example of nested sampling strategy

- experimenter estimates calcium concentration from turnip leaves
- randomly selects 4 turnip plants
- within each plant, randomly samples 3 leaves
- within each leaf, randomly samples 3 locations
- ➡ measures calcium in each location
- final measure depends on variation among plants
- variation among leaves within plant
- variation among locations <u>within</u> leaves





| Ex         | Example: turnips |            |              |      |            |            |            |     |     |           |      |       |      |                            |
|------------|------------------|------------|--------------|------|------------|------------|------------|-----|-----|-----------|------|-------|------|----------------------------|
| lo:<br>xt: | ad(url<br>abs(~p | ("h<br>lar | nttr<br>nt+] | b:// | /pn<br>f,d | b.m<br>ata | cma<br>=tu | ste | er. | ca/'<br>) | benn | .ett/ | psy7 | 10/datasets/turnips.rda")) |
| ##         |                  | lea:       | f            |      |            |            |            |     |     |           |      |       |      |                            |
| ##         | plant            | L1         | L2           | L3   | L4         | L5         | L6         | L7  | L8  | L9        | L10  | L11   | L12  |                            |
| ##         | -<br>p1          | 2          | 2            | 2    | 0          | 0          | 0          | 0   | 0   | 0         | 0    | 0     | 0    |                            |
| ##         | -<br>p2          | 0          | 0            | 0    | 2          | 2          | 2          | 0   | 0   | 0         | 0    | 0     | 0    |                            |
| ##         | p3               | 0          | 0            | 0    | 0          | 0          | 0          | 2   | 2   | 2         | 0    | 0     | 0    |                            |
| ##         | p4               | 0          | 0            | 0    | 0          | 0          | 0          | 0   | 0   | 0         | 2    | 2     | 2    |                            |
|            |                  |            |              |      |            |            |            |     |     |           |      |       |      |                            |
|            |                  |            |              |      |            |            |            |     |     |           |      |       |      |                            |
|            |                  |            |              |      |            |            |            |     |     |           |      |       |      |                            |
|            |                  |            |              |      |            |            |            |     |     |           |      |       |      |                            |
|            |                  |            |              |      |            |            |            |     |     |           |      |       |      |                            |
|            |                  |            |              |      |            |            |            |     |     |           |      |       |      |                            |

| > t | urnips<br>plant | leaf | spot        | calcium      |                                                              |
|-----|-----------------|------|-------------|--------------|--------------------------------------------------------------|
| 1   | p1              | L1   | s1          | 3.28         |                                                              |
| 2   | p1              | L1   | s2          | 3.09         |                                                              |
| 3   | p1              | L2   | s3          | 3.52         |                                                              |
| 4   | p1              | L2   | s4          | 3.48         |                                                              |
| 5   | p1              | L3   | s5          | 2.88         |                                                              |
| 6   | p1              | L3   | s6          | 2.80         | • Each plant, each leaf, and each spot is                    |
| 7   | p2              | L4   | s7          | 2.46         | • Lacii piant, eacii tear, and eacii spot is                 |
| 8   | p2              | L4   | s8          | 2.44         | given a <u>unique</u> identifier                             |
| 9   | p2              | L5   | s9          | 1.87         | • — — — — — — — — — — — — — — — — — — —                      |
| 10  | p2              | L5   | s10         | 1.92         | <ul> <li>Necessary if you want lmer to figure out</li> </ul> |
| 11  | p2              | L6   | s11         | 2.19         |                                                              |
| 12  | p2              | L6   | s12         | 2.19         | that leaf is NESTED in plant and spot is                     |
| 13  | р3              | L7   | s13         | 2.77         | NESTED in leaf                                               |
| 14  | p3              | L7   | s14         | 2.66         |                                                              |
| 15  | р3              | L8   | s15         | 3.74         |                                                              |
| 16  | p3              | L8   | s16         | 3.44         |                                                              |
| 17  | p3              | L9   | s17         | 2.55         |                                                              |
| 18  | p3              | L9   | S18         | 2.55         |                                                              |
| 19  | p4              | L10  | s19<br>- 20 | 3.78         |                                                              |
| 20  | p4              | L10  | s20         | 3.87         |                                                              |
| 21  | p4              |      | 521         | 4.07         |                                                              |
| 22  | p4              |      | 522         | 4.1Z         |                                                              |
| 23  | p4              | L12  | 523         | 5.3L<br>5.31 |                                                              |

| Example:<br>using aov() | turnips                                                                                                                             |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                         | <pre>&gt; summary(aov(calcium~plant+leaf,data=turnips) )</pre>                                                                      |
|                         | Dt Sum Sq Mean Sq F value Pr(>F)<br>n]ant 3 7 56 2 520 378 7 3 8e-12 ***                                                            |
|                         | leaf 8 2.63 0.329 49.4 5.1e-08 ***                                                                                                  |
|                         | Residuals 12 0.08 0.007                                                                                                             |
|                         | <pre>&gt; (F.plant &lt;- 2.5201/.3288) # denominator from leaf [1] 7.665 &gt; (p.plant &lt;- 1-pf(F.plant,3,8) ) [1] 0.009727</pre> |
|                         | $F_A = \frac{MS_A}{MS_{B/A}}$ $F_{B/A} = \frac{MS_{B/A}}{MS_{Residuals}}$                                                           |

#### **Example:** turnips

using aov()

```
> n <- 2
> a <- 4
> b <- 3
> # variance components (anova estimates):
> var.comp.error <- .0067</pre>
> ( var.comp.leaf <- (.3288-.0067) / n )</pre>
[1] 0.161
> (var.comp.plant <- (2.5201 - .3288) / (b*n) )
[1] 0.3652
> # partial ICC:
> (part.icc.leaf <- var.comp.leaf / (var.comp.leaf + var.comp.error) )</pre>
[1] 0.9601
> (part.icc.plant <- var.comp.plant / (var.comp.plant + var.comp.error) )</pre>
[1] 0.982
```

### **Example:** turnips

analysis with Imer

```
> library(lmerTest)
> turnip.lme.01 <- lmer(calcium ~ 1 + (1|plant) + (1|leaf),data=turnips)</pre>
> anova(turnip.lme.01) # nothing here; no fixed effects
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
> ranova(turnip.lme.01) # chi-square tests on random effects
ANOVA-like table for random-effects: Single term deletions
Model:
calcium ~ (1 | plant) + (1 | leaf)
            npar logLik AIC LRT Df Pr(>Chisq)
              4 -1.09 10.2
<none>
(1 | plant) 3 -3.73 13.5 5.29 1
                                          0.022 *
(1 | leaf)
            3 -15.62 37.2 29.07 1
                                         7e-08 ***
```

### **Example:** turnips

variance components & association strength

### Variance Components

| vc<br><b>pri</b>     | <- VarCon<br>nt(vc,con              | rr(turnip.lm<br>np="Variance       | e.01)<br>")                               | lil<br>ico                | brary(<br>c(turn                        | per<br>ip.                                                                   | forman<br>lme.01 | nce)<br>1,by_group=T | ') |
|----------------------|-------------------------------------|------------------------------------|-------------------------------------------|---------------------------|-----------------------------------------|------------------------------------------------------------------------------|------------------|----------------------|----|
| ##<br>##<br>##<br>## | Groups<br>leaf<br>plant<br>Residual | Name<br>(Intercept)<br>(Intercept) | Variance<br>0.16117<br>0.36460<br>0.00665 | ##<br>##<br>##            | # ICC<br>Group                          | by<br>I                                                                      | Group<br>ICC     | ICC (not partial-IC  |    |
| varia                | ition within a                      | leaf is VERY small                 | 6 plants                                  | ##                        | plant                                   |                                                                              | ).685            |                      |    |
| COM                  |                                     |                                    | $\hat{\rho}_{plant}^2$                    | $=\frac{1}{\hat{\sigma}}$ | $\hat{c}^2_{plant} + \hat{c}^2_{plant}$ | $\hat{\sigma}^2_{plant}$<br>$\hat{\sigma}^2_{leaf} + \hat{\sigma}^2_{error}$ |                  |                      |    |

Intraclass Correlation

ICC (not partial-ICC)