PSYCH 710

Random, Mixed, \& Nested ANOVA

Prof. Patrick Bennett

1-Way Random ANOVA

fixed vs. random factors

- fixed factor: levels of factor would be the same in replication
- random factor: levels were selected randomly from large set \& would vary across replications
- introduces another source of variance that must be accounted for in our analyses

1-way random ANOVA

- alphas are assumed to be random variables selected from zero-mean, Normal distribution
- variance of scores is the sum of alpha \& error variance

Full \& Reduced Models:
$Y_{i j}=\mu+\alpha_{j}+\epsilon_{i j}$
$Y_{i j}=\mu+\epsilon_{i j}$
$\operatorname{Var}\left(Y_{i j}\right)=\sigma_{\alpha}^{2}+\sigma_{\epsilon}^{2}$
$\mathrm{H} 0: \sigma_{\alpha}^{2}=0$
$\mathrm{H} 1: \sigma_{\alpha}^{2}>0$

1-way random ANOVA

$\mathrm{H} 0: \sigma_{\alpha}^{2}=0$
$\mathrm{H} 1: \sigma_{\alpha}^{2}=0$
H1: $\sigma_{\alpha}^{2}>0$
$\xi\left[\frac{E_{F}}{d f_{F}}\right]=\xi\left[\mathrm{MS}_{W G}\right]=\sigma_{\epsilon}^{2}$
When HO is TRUE:
$\xi\left[\mathrm{MS}_{B G}\right]=\xi\left[\mathrm{MS}_{W G}\right]=\sigma_{\epsilon}^{2}$
$\mathrm{MS}_{B G} \approx \mathrm{MS}_{W G}$
$F(a-1, N-a)=\frac{\mathrm{MS}_{B G}}{\mathrm{MS}_{W G}}$

Ratio of variance components

$$
\hat{\theta}=\frac{\hat{\sigma}_{\alpha}^{2}}{\hat{\sigma}_{\epsilon}^{2}}=\frac{\mathrm{MS}_{\mathrm{BG}}-m \mathrm{MS}_{\mathrm{WG}}}{m n \mathrm{MS}_{\mathrm{WG}}} \quad m=\frac{a(n-1)}{a(n-1)-2}
$$

но : $\frac{\sigma_{\alpha}^{2}}{\sigma_{\varepsilon}^{2}} \leq \theta_{0}$
$\mathrm{H} 1: \frac{\sigma_{\alpha}^{2}}{\sigma_{e}^{2}}>\theta_{0}$

$$
\begin{aligned}
& F_{\text {obs }}=\frac{\mathrm{MS}_{\mathrm{SG}_{\mathrm{G}}}}{\mathrm{MS}_{\mathrm{WG}}} \\
& \text { reject H0 if } F_{\text {obs }}>\left(1+n \theta_{0}\right) F_{c} \\
& F_{c}: p\left(F_{c} \mid \mathrm{H} 0 \text { is TRUE }\right)<\alpha\left(d f_{1}=(a-1) ; d f_{2}=a(n-1)\right)
\end{aligned}
$$

anova estimate of variance component

$$
\begin{aligned}
& \operatorname{Var}\left(Y_{i j}\right)=\sigma_{\alpha}^{2}+\sigma_{\epsilon}^{2} \\
& \hat{\sigma}_{\alpha}^{2}=(1 / n) \times\left(\mathrm{MS}_{B G}-\mathrm{MS}_{W G}\right) \text { assumes equal } \mathrm{n} \text { per group } \\
& \text { (if } \hat{\sigma}_{\alpha}^{2}<0 \text { then set } \hat{\sigma}_{\alpha}^{2} \text { to zero) }
\end{aligned}
$$

strength of association

intraclass correlation ICC

$$
\begin{gathered}
\rho_{I}=\frac{\sigma_{\alpha}^{2}}{\sigma_{\alpha}^{2}+\sigma_{\epsilon}^{2}} \\
\hat{\rho}_{I}=\frac{\mathrm{MS}_{B G}-\mathrm{MS}_{W G}}{\operatorname{MS}_{B G}+(n-1) \mathrm{MS}_{W G}} \quad \hat{\rho}_{I}=\frac{F_{B G}-1}{(n-1)+F_{B G}}
\end{gathered}
$$

examples

1-way random anova

Random ANOVA \& Variance Components (Dyestuff)

The Dyestuff data frame provides the yield of dyestuff (Naphthalene Black 12B) from 5 different preparation from each of 6 different batches of an intermediate product (H-acid). The Dyestuff $f 2$ data were generated data
in the same structure but with a large residual variance relative to the batch variance.
> dye.aov. 01 <- $\operatorname{aov}(Y i e l d \sim B a t c h$, data=Dyestuff)
> summary(dye.aov.01)

```
Df Sum Sq Mean Sq F value Pr(>F)
Batch 5 56358 11272 4.598 0.0044 **
Residuals 24 58830-2451
MS.batch <- }1127
MS.error <- }245
var.comp.error <- MS.error
> n <- 5 # observations per cell
> (var.comp.batch <- (MS.batch - MS.error)/n )
[1] 1764.2
sqrt(var(Dyestuff$Yield)) # SD of sample yield
[1] }63.0236
sqrt(var.comp.batch + var.comp.error) # estimated pop SD of yield
[1] 64.92457
```


Random ANOVA \& Variance Components (Dyestuff)

The Dyestuff data frame provides the yield of dyestuff (Naphthalene Black 12B) from 5 different preparations
from each of 6 different batches of an intermediate product (H-acid). The Dyestuff $\begin{aligned} & \text { data were generated data }\end{aligned}$ in the same structure but with a large residual variance relative to the batch variance.
> MS. batch <- 11272
> MS. error <- 2451
$>$ var.comp.error <- MS. error
$>\mathrm{n}<-5$ \# observations
$>n<-5$ \# observations per cell
$>$ (var. comp. batch <- (MS. batch - MS.error)/n)
[1] 1764.2
s sqrt(var(Dyestuff\$Yield)) \# SD of sample yield
[1] 63.02367
[1] 63.02367
3 sqrt(var. comp.batch + var.comp.error) \# estimated pop SD of yield
[1] 64.9245
> \# unbiased estimate of variance ratio (theta)
$>m<-6$ * $(\mathrm{n}-1) /(6$ * ($\mathrm{n}-1)-2)$
$>\left(11272-m^{*} 2451\right) /\left(m^{*} n * 2451\right)$
[1] 0.6431
> \# association strength (ICC intraclass correlation):
$>$ var.comp.batch / (var.comp.batch + var.comp.error)
[1] 0.4185

```
Random ANOVA & Variance Components (Dyestuff)
anovaVCA in VCA package
    > library(VCA)
    > dye.VCA <- anovaVCA(Yield~Batch,Data=Dyestuff) # note capital D in Data
    > print(dye.VCA) # print, not summary
    Result Variance Component Analysis
    Name DF SS MS VC %Total SD CV[%]
    1 total 15.101732 MS MS 4215.3 100 
    2 Batch 5 56357.5 11271.5 1764.05 41.848741)42.000595 2.74963
    3 error 24 58830 2451.25 2451.25 58.151259`49.5101 
Mean: 1527.5 ( N = 30)
Experimental Design: balanced | Method: ANOVA
Coefficient of Variation
    > sd.batch <- 42
    > sd.error <- 49.5
    > sd.error <- 49.51 
    > ( (V.batch <- sd.batch/mean(Dyestuff$Yield))
    [1] 0.02749591
    > (CV.error <- sd.error/mean(Dyestuff$Yield))
                                    intraclass correlation
```


2-Way Mixed ANOVA

2-way mixed ANOVA

(A fixed; B random
$Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\epsilon_{i j k}$

- A is fixed: alphas are constrained (sum-to-zero)
- B is random: levels selected randomly
- distributed normally with $\mu=0$ and var $=\sigma_{\beta}^{2}$
- AxB interaction effects are random
- distributed normally with $\mu=0$ and $\operatorname{var}=\sigma_{(\alpha \beta)}^{2}$
- sum of interaction effects across levels of fixed factor is zero
- sum of interaction effects within levels of fixed factor may not be zero

Effect of randomly sampling levels of a factor

- A = Therapy Mode (fixed)
- all a's equal zero
- B = Clinical Trainee (random)
- all β^{\prime} 's equal zero
- AxB interaction effects (α, β) are not all zero
- Across all possible levels, sum of (α, β)'s in each column \& row = 0
- When B is sampled, sum of (α, β) 's across levels of B may not be zero
- AxB interaction leaks into main effect of A (i.e., the fixed factor)

Maxwell, Delaney \& Kelly (2018)

Expected values of Mean Squares

Source	$\xi(M S) A$ fixed; B random
A	$\sigma_{\epsilon}^{2}+n \sigma_{(\alpha \beta)}^{2}+b n \sum_{j=1}^{a} \alpha_{j}^{2} /(a-1)$
B	$\sigma_{\epsilon}^{2}+a n \sigma_{\beta}^{2}$
$A \times B$	$\sigma_{\epsilon}^{2}+n \sigma_{(\alpha \beta)}^{2}$
Residuals	σ_{ϵ}^{2}

Evaluating main effect of B

$\mathrm{H} 0: \sigma_{\beta}^{2}=0$
$\mathrm{H} 1: \sigma_{\beta}^{2}>0$
When HO is TRUE:
$\mathrm{MS}_{B} \approx \mathrm{MS}_{\text {Residuals }}$

Evaluating main effect of A

Source	$\xi(M S) A$ fixed; B random
A	$\sigma_{\epsilon}^{2}+n \sigma_{(\alpha \beta)}^{2}+b n \sum_{j=1}^{a} \alpha_{j}^{2} /(a-1)$
B	$\sigma_{\epsilon}^{2}+a n \sigma_{\beta}^{2}$
$A \times B$	$\sigma_{\epsilon}^{2}+n \sigma_{(\alpha \beta)}^{2}$
Residuals	σ_{ϵ}^{2}

$\mathrm{H} 0: \alpha_{j}=0$ for all levels j
H1: $\alpha_{j} \neq 0$ for at least one level j
MS $_{A} \approx$ MS $^{\text {. }}$ $\mathrm{MS}_{A} \approx \mathrm{MS}_{A \times B}$

Evaluating $\mathrm{A} \times \mathrm{B}$ interaction

$\mathrm{H} 0: \sigma_{(\alpha \beta)}^{2}=0$
$\mathrm{H} 1: \sigma_{(\alpha \beta)}^{2}>0$

When HO is TRUE:
$\mathrm{MS}_{A \times B} \approx \mathrm{MS}_{\text {Residuals }}$

strength of association

mixed 2-way ANOVA

$$
\begin{array}{ll}
\omega_{A, \text { partial }}^{2}=\frac{\sum_{j=1}^{a}\left(\alpha_{j}^{2} / a\right)}{\sigma_{\epsilon}^{2}+\sum_{j=1}^{a}\left(\alpha_{j}^{2} / a\right)} & \hat{\omega}_{A, \text { partial }}^{2}
\end{array}=\frac{(a-1)\left(F_{A}-1\right)}{(a-1)\left(F_{A}-1\right)+n a b}
$$

Example (ACT Experiment)

mixed-effect ANOVA

- study compared 2 programs to prepare for ACT
- crossed-factorial design:
- schools (random) x study program (fixed)
> mw.act <- read.table("chapter_10_table_5.dat")
> names(mw.act)<-c("study","school", "score")
> \# study: fixed; school: random
> mw.act\$study<-factor(mw.act\$study,labels=c("computer", "standard"))
> mw.act\$school<-factor(mw.act\$school,labels="s")
> with(mw.act,tapply(score,list(study,school),length))
s1 s2 s3 s4
$\begin{array}{lllll}\text { computer } & 5 & 5 & 5 & 5\end{array}$
standard $\begin{array}{llll}5 & 5 & 5 & 5\end{array}$

Example (ACT Experiment)

mixed-effect ANOVA with Imer
> require(lmerTest)
> act.lme. 01 <- lmer(score ~ study + (1|school) + (1|study:school),data=mw.act)
> anova(act.lme.01)
Type III Analysis of Variance Table with Satterthwaite's method Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
study $243.84 \quad 243.84 \quad 1 \quad 3 \quad 13.50 .0349$ *

Example (ACT Experiment)

mixed-effect ANOVA
options(contrasts=c("contr.sum", "contr.poly"))
summary(aov(score~study+school+study: school, data=mw.act)
Sum Sq Mean Sq F vatue $\operatorname{Pr}(>F)$

| | 1 | 360 | 360.0 | 19.931 | 9.35 C -05 |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| school | 3 | 100 | 33.3 | 1.845 | 0.159 |

$\begin{array}{lrrrrrr}\text { study:school } & 3 & 80 & 26.7 & 1.476 & 0.240\end{array}$
> MS. study <- 360
$>$ MS.AxB <- 26.67
$>$ df. $A \times B<-3$
$>$ (F.study <- MS.study/MS.AxB)
[1] 13.49831
$>$ (p.study <- 1-pf(F.study, 1, df.AxB))
11] 0.03490257
[1] 0.0349025
[1] 0.666 .shool <- $(33.33-26.67) /(2 * 5))$
${ }^{\text {[1] }} 0.666$

- very small variance components
- this result may be interesting/important
recalculate $F \& p$ for fixed effect
[1] 1.722

Example (ACT Experiment)

mixed-effect ANOVA with Imer
> require(1merTest)
> act.lme. 01 <- lmer(score ~ study + (1|school) + (1|study:school),data=mw.act)
VarCorr(school.lme) \# var components as std dev Groups Name Std.Dev.
study:school (Intercept) 1.312
school (Intercept) 0.81
Residual 4.25
s ranova(school.lme) \# significance tests
ANOVA-like table for random-effects: Single term deletions Model:
score ~ study + (1 | school) + (1 | study:school)
none npar logLik AIC LRT Df $\operatorname{Pr}(>C h i s q)$
(1 | school) $\quad 4 \quad \begin{array}{llllll}-114 & 236 & 0.0373 & 1 & 0.85\end{array}$
(1 | study:school) $\quad 4 \quad-114 \quad 236 \quad 0.2319 \quad 1 \quad 0.63$
dropping random effects does NOT change fit significantly

Example (ACT Experiment)

mixed-effect ANOVA with Imer

> \# association strength for random effects
> library(performance)
> icc(school.lme,by_group=T)
\# ICC by Group
Group I ICC
study:school | 0.084
school | 0.033
\# association strength for fixed effects
> library(effectsize)
> omega_squared(school.lme)
\# Effect Size for ANOVA (Type III)
Parameter | Omega2 (partial) | 95\% CI
study | 0.71 | [0.00, 1.00]

Example (ACT Experiment)

mixed-effect ANOVA [variance components calculated with anovaMM]
> require(VCA)
> act.MM <- anovaMM(score~study + (school) + (study:school),Data=mw.act)
> print(act.MM,aigits=3)
ANOVA-Type Estimation of Mixed Model:
[Fixed Effects]
int studycomputer studystandard
27 -6 0

0

Name DF SS MS VC \%Total SD CV[\%]
$\begin{array}{llllll}1 \text { total } & 33.193 & 20.45 & 100 & 4.522 & 18.842\end{array}$

3 study:school $3 \quad 80 \quad 26.6671 .721 \quad 8.415 \quad 1.312 \quad 5.466$
$\begin{array}{llllllllllll}4 & \text { error } & 32 & 578 & 18.062 & 18.062 & 88.325 & 4.25 & 17.708\end{array}$
$24(N=40)$
Experimental Design: balanced | Method: ANOVA

2-Way Random ANOVA

2-way random ANOVA
 $$
Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\epsilon_{i j k}
$$

($\mathrm{A} \& \mathrm{~B}$ random)

- $A \& B$ are random:
- distributed normally with $\mu=0$ and var= $\sigma^{2} \beta$
- interaction effects are random
- distributed normally with $\mu=0$ and var= $\sigma^{2}(a \beta)$
- main effects evaluated by comparing $M S_{A} \& M S_{B}$ to $M S_{A \times B}$
- interaction evaluated by comparing $\mathrm{MS}_{\mathrm{AxB}}$ to $\mathrm{MS}_{\text {residuals }}$

$$
\begin{array}{ll}
H 0: & \sigma_{\alpha}^{2}=0 \\
H 1: & \sigma_{\alpha}^{2}>0
\end{array}
$$

2-way random ANOVA

$$
Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\epsilon_{i j k}
$$

(A \& B random)

- $\mathrm{A} \& \mathrm{~B}$ are random
- distributed normally with $\mu=0$ and var $=\sigma^{2}$
- interaction effects are random
- distributed normally with $\mu=0$ and var= $\left.\sigma^{2}{ }^{[a f}\right]$
- main effects evaluated by comparing MS_{A} \& MS_{B} to $\mathrm{MS}_{\mathrm{AxB}}$
- interaction evaluated by comparing $\mathrm{MS}_{\mathrm{AxB}}$ to $\mathrm{MS}_{\text {residuals }}$

Source	$\xi(M S) A \& B$ random
A	$\sigma_{\epsilon}^{2}+n \sigma_{(\alpha \beta)}^{2}+b n \sigma_{\alpha}^{2}$
B	$\sigma_{\epsilon}^{2}+n \sigma_{(\alpha \beta)}^{2}+a n \sigma_{\beta}^{2}$
$A \times B$	$\sigma_{\epsilon}^{2}+n \sigma_{(\alpha \beta)}^{2}$
Residuals	σ_{ϵ}^{2}

$$
\begin{aligned}
& H 0: \sigma_{(\alpha \beta)}^{2}=0 \\
& H 1: \sigma_{(\alpha \beta)}^{2}>0
\end{aligned}
$$

2-way random ANOVA
 $$
Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\epsilon_{i j k}
$$

(A \& B random)

- $A \& B$ are random:
- distributed normally with $\mu=0$ and var $=\sigma^{2} \beta$
- interaction effects are random
- distributed normally with $\mu=0$ and var $=\sigma^{2}{ }_{(\alpha \beta)}$
- main effects evaluated by comparing $M S_{A} \& M S_{B}$ to $M S_{A \times B}$
- interaction evaluated by comparing $\mathrm{MS}_{\mathrm{AxB}}$ to $\mathrm{MS}_{\text {residuals }}$

Source	$\xi(M S) A \& B$ random
A	$\sigma_{\epsilon}^{2}+n \sigma_{(\alpha \beta)}^{2}+b n \sigma_{\alpha}^{2}$
B	$\sigma_{\epsilon}^{2}+n \sigma_{(\alpha \beta)}^{2}+a n \sigma_{\beta}^{2}$
$A \times B$	$\sigma_{\epsilon}^{2}+n \sigma_{(\alpha \beta)}^{2}$
Residuals	σ_{ϵ}^{2}

$$
\begin{array}{ll}
H 0: & \sigma_{\beta}^{2}=0 \\
H 1: & \sigma_{\beta}^{2}>0
\end{array}
$$

strength of association

random 2-way ANOVA

$$
\begin{array}{rlrl}
\rho_{I: A, \text { partial }} & =\frac{\sigma_{\alpha}^{2}}{\sigma_{\alpha}^{2}+\sigma_{e}^{2}} & \hat{\sigma}_{\alpha}^{2} & =\frac{\mathrm{MS}_{A}-\mathrm{MS}_{A \times B}}{n b} \\
\rho_{I: B, \text { partial }} & =\frac{\sigma_{\beta}^{2}}{\sigma_{\beta}^{2}+\sigma_{\epsilon}^{2}} & \hat{\sigma}_{\beta}^{2} & =\frac{\mathrm{MS}_{B}-\mathrm{MS}_{A \times B}}{n a} \\
& \hat{\sigma}_{(\alpha \beta)}^{2} & =\frac{\mathrm{MS}_{A \times B}-\mathrm{MS}_{R}}{n} \\
\rho_{I: A B, \text { partial }} & =\frac{\sigma_{(\alpha \beta)}^{2}}{\sigma_{(\alpha \beta)}^{2}+\sigma_{\epsilon}^{2}} & \hat{\sigma}_{e}^{2} & =\mathrm{MS}_{R}
\end{array}
$$

Example (ACT Experiment)

two-way random ANOVA
> options(contrasts=c("contr.sum", "contr.poly"))
> act.aov. 01 <- aov(score~study+school+study:school,data=mw.act)
$>$ summary(act.aov.01)

study	1	360	360	19.93	$9.4 \mathrm{e}-05$
school	3	100	33	1.85	0.16
study:school	3	80	27	1.48	0.24
Residuals	32	578	18		

$\begin{array}{llcl}\text { Residuals } & 32 & 578 & 18 \\ & \end{array}$
> \# assume both f
> MS.axb <- 26.7
> (F.study <- 360/MS.axb)
[1] 13.48
(p.study <- 1-pf(F.study, 1,3))
[1] 0.03495
> (F.school <- 33.3/MS.axb)
$\stackrel{\square}{>}$ (p.school <- 1-pf(F.school $, 3,3$)
[1] 0.4301
recalculate $F \& p$ for both main effects

Example (ACT Experiment)

ANOVA variance components
> library(VCA)
anovaVCA(score ~ $1+$ study*school, Data=mw.act)
Result Variance Component Analysis:

Name	DF	SS	MS	VC	\%Tot	SD	CV[\%]
1 total	4.114573			37.116667	100	6.092345	25.384771
2 study	1	360	360	16.666667	44.903458	4.082483	17.010345
school	3	100	33.333333	0.666667	1.796138	0.816497	3.402069
4 study:school	3	80	26.666667	1.720833	4.636282	1.311805	5.465856
5 error	32	578	18.0625	18.0625	48.664122	4.25	17.708333

Mean: $24(\mathrm{~N}=40)$
Experimental Design: balanced । Method: ANOVA

Example (ACT Experiment)

anova variance components
> xtabs(~school+study, data=mw.act)

	Study	
school	computer	standard
s1	5	5
s2	5	5
s3	5	5
s4	5	5

\# variance components
$b<-2+$ levels of study
$>n<-5$ \# per group

```
[1] 0.6
>( var.c
> (var.comp.study_x_school <- (27-18)/n )
[1] 1.8
```


Example (ACT Experiment)

two-way random factorial (with Imer)
> \# with lmer
$>$ library(lmerTest)
$>$ options(contrasts=c("contr.sum", "contr. poly"))
> act.lme <- lmer(score ~ $1+$ (1|study) + (1|school) + (1|study:school),data=nw.act)
> print(VarCorr(act.lme), comp="Variance")
Groups Name Variance
study:school (Intercept) 1.721
$\begin{array}{ll}\text { school } & \text { (Intercept) } 16.667\end{array}$
Residual 18.062

Nested Factors

Example of nested sampling strategy

- experimenter estimates calcium concentration from turnip leaves
- randomly selects 4 turnip plants
- within each plant, randomly samples 3 leaves
- within each leaf, randomly samples 3 locations
- measures calcium in each location
- final measure depends on variation among plants
- variation among leaves within plant
- variation among locations within leaves

Nested Experimental Design

- Factor B is nested within factor A
- if each level of B occurs within only one level of A
- Nesting often is a result of sampling strategy

Table 4: Example of a nested design.

	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}
a_{1}	6	6	6	x	x	x
a_{2}	x	x	x	6	6	6

Evaluating effects of A \& B

$$
Y_{i j k}=\mu+\alpha_{j}+\beta_{k / j}+\epsilon_{i j k}
$$

b is the number of levels of B in each level of A

Table 5: Expected mean squares for nested designs (B nested within A).

	$\xi(M S)$	$\xi(M S)$	$d f$
Source	A fixed; B random	$A \& B$ random	
A	$\sigma_{e}^{2}+n \sigma_{\beta}^{2}+b m \sum_{j=1}^{a} \alpha_{j} /(a-1)$	$\sigma_{e}^{2}+n \sigma_{\beta}^{2}+b n \sigma_{\alpha}^{2}$	$a-1$
B / A	$\sigma_{e}^{2}+n \sigma_{\beta}^{2}$	$\sigma_{e}^{2}+n \sigma_{\beta}^{2}$	$\sum_{j=1}^{a}(b-1)=a(b-1)$
Residuals	σ_{e}^{2}	σ_{e}^{2}	$a b(n-1)$

$$
F_{A}=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{\mathrm{B} / \mathrm{A}}} \quad F_{\mathrm{B} / \mathrm{A}}=\frac{\mathrm{MS}_{\mathrm{B} / \mathrm{A}}}{\mathrm{MS}_{\text {Residuals }}}
$$

$$
\begin{aligned}
& \text { Variance components } \\
& \text { B nested within A } \\
& \hat{\sigma}_{\beta}^{2}=\frac{\mathrm{MS}_{B / A}-\mathrm{MS}_{\text {Residuals }}}{n} \quad \hat{\sigma}_{\alpha}^{2}=\frac{\mathrm{MS}_{A}-\mathrm{MS}_{B / A}}{b n} \\
& \begin{array}{l}
\mathrm{n}: \text { observations per cell } \\
\mathrm{b}: \text { number of levels of } \mathrm{B} \text { within each level of } \mathrm{A}
\end{array}
\end{aligned}
$$

Example: turnips

load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/turnips.rda")) xtabs(~plant+leaf, data=turnips)
\#\# leaf
\#\# plant L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
\#\# $\begin{array}{lllllllllllll}\mathrm{p} 1 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
\#\# $\quad \begin{array}{lllllllllllll}\text { p2 } & 0 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllllllllll}\text { \#\# } & \text { p3 } & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 0 \\ \text { \#\# } & \text { p4 } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2\end{array}$

Example: turnips

using aov()
> summary(aov(calcium~plant+leaf,data=turnips))
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{lrrrrrr} & 3 & 7.56 & 2.520 & 378.7 & 3.8 \mathrm{e}-12 & * * * \\ \text { leaf } & 8 & 2.63 & 0.329 & 49.4 & 5.1 \mathrm{e}-08 & * * *\end{array}$
$\begin{array}{lrrr}\text { leaf } & 8 & 2.63 & 0.329 \\ \text { Residuals } & 12 & 0.08 & 0.007\end{array}$
> (F.plant <- 2.5201/.3288) \# denominator from leaf
[1] 7.665
> (p.plant <- 1-pf(F.plant, 3,8))
[1] 0.009727

$$
F_{A}=\frac{\mathrm{MS}_{A}}{\mathrm{MS}_{\mathrm{B} / \mathrm{A}}} \quad F_{\mathrm{B} / \mathrm{A}}=\frac{\mathrm{MS}_{\mathrm{B} / \mathrm{A}}}{\mathrm{MS}_{\mathrm{Residuals}}}
$$

Example: turnips

using aov()

> $n<-2$
$>a<-4$
$>b<-3$
> \# variance components (anova estimates)
$>$ var.comp.error <- . 0067
$>$ (var. comp.leaf <-(.3288-.0067)/n)
[1] 0.161
> (var.comp.plant <- (2.5201-.3288) / (b*n))
[1] 0.3652
> \# partial ICC:
> (part.icc.leaf <- var.comp.leaf / (var.comp.leaf + var.comp.error))
[1] 0.9601
> (part.icc.plant <- var.comp.plant / (var.comp.plant + var.comp.error)) [1] 0.982

Example: turnips

analysis with Imer
> library(lmerTest)
> turnip.lme. 01 <- lmer(calcium ~ 1 + (1|plant) + (1|leaf),data=turnips)
> anova(turnip.lme.01) \# nothing here; no fixed effects
Type III Analysis of Variance Table with Satterthwaite's method Sum Sa Mean Sq NumDF DenDF F value $\operatorname{Pr}(>F)$
> ranova(turnip.lme.01) \# chi-square tests on random effects
ANOVA-like table for random-effects: Single term deletions

Model:

calcium ~ (1 | plant) + (1 | leaf)
<none> npar logLik AIC LRT Df Pr(>Chisq)
(1 I plant) $3 \begin{array}{llrrrr}3 & -3.73 & 13.5 & 5.29 & 1 & 0.022 \text { * }\end{array}$

Example: turnips

variance components \& association strength

Variance Components

vc <- VarCorr (turnip.1me.01)
print(vc, comp="Variance")

\#\#	Groups	Name	Variance
\#\#	leaf	(Intercept)	0.16117
\#\#	plant	(Intercept)	0.36460
\#\#	Residual		0.00665

variation within a leaf is VERY small
compared to variation across leaves $\&$ plants
Intraclass Correlation
library (performance)
icc (turnip.lme.01, by_group=T)

$$
\begin{aligned}
& \text { \#\# \# ICC by Group } \\
& \text { \#\# } \\
& \text { \#\# Group | } \\
& \text { \#\# ---c- ICC } \\
& \text { \#\# leaf | } 0.303 \\
& \text { \#\# plant | } 0.685
\end{aligned}
$$

$$
\hat{\rho}_{\text {plant }}^{2}=\frac{\hat{\sigma}_{\text {plant }}^{2}}{\hat{\sigma}_{\text {plant }}^{2}+\hat{\sigma}_{\text {leaf }}^{2}+\hat{\sigma}_{\text {error }}^{2}}
$$

