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fixed vs. random factors

• fixed factor: levels of factor would be the same in replication 

• random factor: levels were selected randomly from large set 
& would vary across replications 

- introduces another source of variance that must be accounted for in our 
analyses

1-Way Random ANOVA

1-way random ANOVA

• alphas are assumed to be 
random variables selected from 
zero-mean, Normal distribution 

• variance of scores is the sum of 
alpha & error variance
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10 Random or Nested Factors

10.1 Random E↵ects

So far in this course we have been using statistical methods that are appropriate for cases in which the ex-
perimenter is interested in knowing the e↵ects of the particular levels of the independent variables included
in the experiment. Such factors are called fixed because the same levels would be used in replications of the
experiment, and the models used to analyzed such data are called fixed-e↵ects models. In other experimental
situations, however, it may not be possible or appropriate to include all levels of a variable in a single experiment,
and therefore we may be forced to select a subset, or sample, of the population of levels for inclusion in our
experiment. The particular levels of the factor therefor are likely to vary across replications of the experiment.
Factors in which levels have been selected randomly are called random factors, and the statistical models used
to analyze experiments that use such factors are called random-e↵ects models. If an experiment contains both
fixed and random factors, then the data are analyzed with a so-called mixed model.

Why do we need a di↵erent kind of model to analyze experiments that include random factors? In fixed-
e↵ects models, the only source of random variation among scores is error variance. However, experiments that
include random factors have multiple sources of variability, or variance components: in addition to error variance,
the e↵ects associated with random factors are conceptualized as random variables drawn from a population of
e↵ects. As we shall see, these extra sources of variation alter way we evaluate main e↵ects and interactions.
Furthermore, the goal of evaluating random e↵ects di↵ers slightly from the goal of analyzing fixed e↵ects. In
the case of fixed-e↵ects models, conclusions reached about significance (or lack thereof) of main e↵ects and
interactions are restricted to the particular levels of the factors that were included in the experiment. Random-
e↵ects models, on the other hand, enable us to generalize our conclusions to the entire population of levels of
the random factor, even ones not included in our experiment.

10.2 one-factor case

Data from an experiment that uses a single random factor are analyzed by comparing the following two nested
models:

Yij = µ+ ↵j + ✏ij (1)

Yij = µ+ ✏ij (2)

As before, the errors are assumed to be independent and normally distributed with a zero mean and a variance
of �2

✏ . Note that these models look identical to the ones used to evaluate one-factor, fixed e↵ects experiments.
However, in a random e↵ects model the ↵’s are assumed to be random variables selected from a normal dis-
tribution with a mean of zero and a variance of �2

↵. Furthermore, ↵j and ✏ij are assumed to be independent.
With these assumptions, the expected value of the scores is µ, and the variance of the Yij ’s is the sum of two
variance components:

Var(Yij) = �2
↵ + �2

✏ (3)
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The random e↵ects models in Equations 1 and 2 can be used to evaluate the following null and alternative
hypotheses:

H0 : �2
↵ = 0 (4)

H1 : �2
↵ > 0 (5)

Note how these hypotheses di↵er from those evaluated by fixed-e↵ects models. Also note that the conclusions
drawn from the analysis apply to all possible levels of the random factor, not just the ones used in the current
experiment. Despite these di↵erences, the actual statistical test of a random e↵ect in a one-factor design is
equivalent to the test used to evaluate a single fixed factor. As for the fixed-e↵ects case, the expected value of
the mean-square residuals, or mean-square within group, for the full model is

⇠


EF

df F

�
= ⇠ [MSWG] = �2

✏ , (6)

where EF is the sum of squared residuals from the full model, and df F – the degrees of freedom – equals the
total number of scores minus the number of groups (df = N � a). Equation 6 sometimes is referred to as the
ANOVA estimate of the variance component �2

✏ .
Equation 6 is true regardless of whether the null hypothesis is true or false, but the between-group variation

does depend on whether status of the null hypothesis. When it is true, �2
↵ = 0, error variance is the only source

of variation among the scores, and therefore the expected value of the mean-square between groups equals the
expected value of MSWG:

⇠ [MSBG] = ⇠ [MSWG] = �2
✏ (7)

When the null hypothesis is false, the variation among scores reflects �2
↵ and �2

✏ , and the expected value of
MSBG is

⇠ [MSBG] = ⇠


ER � EF

df R � df F

�
= �2

✏ + n0�2
↵ (8)

where ER is the sum of squared residuals from the reduced model, df R equals the total number of scores
minus one (df = N � 1), and

n0 = [1/(a� 1)]
hX

nj � (
X

n2
j/

X
nj)

i
(9)

When there are an equal number of subjects per group, n0 = n. When there are unequal numbers of subjects
per group, 0 < n0 < n̄.

When the null hypothesis is true, �2
↵ = 0, MSBG ⇡ MSWG, and the expected value of MSBG/MSWG is

one. In this case, the ratio MSBG/MSWG is a random variable that is distributed as F with a � 1 and N � a
degrees of freedom. However, when the null hypothesis is false, �2

↵ > 0 and the expected value of MSBG/MSWG

increases. This fact forms the basis of the null hypothesis test: we assume that H0 is true, and therefore that
the ratio of mean-squares is distributed as F with a� 1 and N � a degrees of freedom. If the observed ratio is
unusually large – i.e., if the probability of obtaining an F that is at least as large as the observed value is  .05
or .01 – then we reject the null hypothesis in favor of the alternative.

10.2.1 strength of association & variance components

When dealing with a random factor, the proper measure of association strength is the intraclass correlation,
which is denoted as ⇢I . The intraclass correlation represents the proportion of population variance accounted
for by a random e↵ect:

⇢I =
�2
↵

�2
↵ + �2

✏
(10)

When there are equal n per group, the expected value of MSBG is �2
✏ + n�2

↵. Taking advantage of the fact that
⇠(MSWG) = �2

✏ , it is possible to show that

�̂2
↵ = (1/n)⇥ (MSBG �MSWG) (11)
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Full & Reduced Models:



1-way random ANOVA
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2

When H0 is TRUE:

F(a − 1,N − a) =
MSBG

MSWG

MSBG ≈ MSWG
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2

When H0 is FALSE:

MSBG > MSWG

F ≫ 1 (for balanced designs, )n′￼ = n

anova estimate of variance component
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2

assumes equal n per group
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So far in this course we have been using statistical methods that are appropriate for cases in which the ex-
perimenter is interested in knowing the e↵ects of the particular levels of the independent variables included
in the experiment. Such factors are called fixed because the same levels would be used in replications of the
experiment, and the models used to analyzed such data are called fixed-e↵ects models. In other experimental
situations, however, it may not be possible or appropriate to include all levels of a variable in a single experiment,
and therefore we may be forced to select a subset, or sample, of the population of levels for inclusion in our
experiment. The particular levels of the factor therefor are likely to vary across replications of the experiment.
Factors in which levels have been selected randomly are called random factors, and the statistical models used
to analyze experiments that use such factors are called random-e↵ects models. If an experiment contains both
fixed and random factors, then the data are analyzed with a so-called mixed model.

Why do we need a di↵erent kind of model to analyze experiments that include random factors? In fixed-
e↵ects models, the only source of random variation among scores is error variance. However, experiments that
include random factors have multiple sources of variability, or variance components: in addition to error variance,
the e↵ects associated with random factors are conceptualized as random variables drawn from a population of
e↵ects. As we shall see, these extra sources of variation alter way we evaluate main e↵ects and interactions.
Furthermore, the goal of evaluating random e↵ects di↵ers slightly from the goal of analyzing fixed e↵ects. In
the case of fixed-e↵ects models, conclusions reached about significance (or lack thereof) of main e↵ects and
interactions are restricted to the particular levels of the factors that were included in the experiment. Random-
e↵ects models, on the other hand, enable us to generalize our conclusions to the entire population of levels of
the random factor, even ones not included in our experiment.

10.2 one-factor case

Data from an experiment that uses a single random factor are analyzed by comparing the following two nested
models:

Yij = µ+ ↵j + ✏ij (1)

Yij = µ+ ✏ij (2)

As before, the errors are assumed to be independent and normally distributed with a zero mean and a variance
of �2

✏ . Note that these models look identical to the ones used to evaluate one-factor, fixed e↵ects experiments.
However, in a random e↵ects model the ↵’s are assumed to be random variables selected from a normal dis-
tribution with a mean of zero and a variance of �2

↵. Furthermore, ↵j and ✏ij are assumed to be independent.
With these assumptions, the expected value of the scores is µ, and the variance of the Yij ’s is the sum of two
variance components:

Var(Yij) = �2
↵ + �2

✏ (3)

1(if  then set  to zero)̂σ2
α < 0 ̂σ2

α

Ratio of variance components

Fobs =
MSBG

MSWG

Fc : p(Fc |H0 is TRUE) < α (df1 = (a − 1); df2 = a(n − 1))

reject H0 if Fobs > (1 + nθ0)Fc

H0 :
σ2

α

σ2
ϵ

≤ θ0

H1 :
σ2

α

σ2
ϵ

> θ0

̂θ =
̂σ2
α

̂σ2
ϵ

=
MSBG − mMSWG

mnMSWG
m =

a(n − 1)
a(n − 1) − 2

strength of association 
intraclass correlation ICC
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The random e↵ects models in Equations 1 and 2 can be used to evaluate the following null and alternative
hypotheses:

H0 : �2
↵ = 0 (4)

H1 : �2
↵ > 0 (5)

Note how these hypotheses di↵er from those evaluated by fixed-e↵ects models. Also note that the conclusions
drawn from the analysis apply to all possible levels of the random factor, not just the ones used in the current
experiment. Despite these di↵erences, the actual statistical test of a random e↵ect in a one-factor design is
equivalent to the test used to evaluate a single fixed factor. As for the fixed-e↵ects case, the expected value of
the mean-square residuals, or mean-square within group, for the full model is

⇠


EF

df F

�
= ⇠ [MSWG] = �2

✏ , (6)

where EF is the sum of squared residuals from the full model, and df F – the degrees of freedom – equals the
total number of scores minus the number of groups (df = N � a). Equation 6 sometimes is referred to as the
ANOVA estimate of the variance component �2

✏ .
Equation 6 is true regardless of whether the null hypothesis is true or false, but the between-group variation

does depend on whether status of the null hypothesis. When it is true, �2
↵ = 0, error variance is the only source

of variation among the scores, and therefore the expected value of the mean-square between groups equals the
expected value of MSWG:

⇠ [MSBG] = ⇠ [MSWG] = �2
✏ (7)

When the null hypothesis is false, the variation among scores reflects �2
↵ and �2

✏ , and the expected value of
MSBG is

⇠ [MSBG] = ⇠


ER � EF

df R � df F

�
= �2

✏ + n0�2
↵ (8)

where ER is the sum of squared residuals from the reduced model, df R equals the total number of scores
minus one (df = N � 1), and

n0 = [1/(a� 1)]
hX

nj � (
X

n2
j/

X
nj)

i
(9)

When there are an equal number of subjects per group, n0 = n. When there are unequal numbers of subjects
per group, 0 < n0 < n̄.

When the null hypothesis is true, �2
↵ = 0, MSBG ⇡ MSWG, and the expected value of MSBG/MSWG is

one. In this case, the ratio MSBG/MSWG is a random variable that is distributed as F with a � 1 and N � a
degrees of freedom. However, when the null hypothesis is false, �2

↵ > 0 and the expected value of MSBG/MSWG

increases. This fact forms the basis of the null hypothesis test: we assume that H0 is true, and therefore that
the ratio of mean-squares is distributed as F with a� 1 and N � a degrees of freedom. If the observed ratio is
unusually large – i.e., if the probability of obtaining an F that is at least as large as the observed value is  .05
or .01 – then we reject the null hypothesis in favor of the alternative.

10.2.1 strength of association & variance components

When dealing with a random factor, the proper measure of association strength is the intraclass correlation,
which is denoted as ⇢I . The intraclass correlation represents the proportion of population variance accounted
for by a random e↵ect:

⇢I =
�2
↵

�2
↵ + �2

✏
(10)

When there are equal n per group, the expected value of MSBG is �2
✏ + n�2

↵. Taking advantage of the fact that
⇠(MSWG) = �2

✏ , it is possible to show that

�̂2
↵ = (1/n)⇥ (MSBG �MSWG) (11)

2
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Equation 11 sometimes is referred to as the ANOVA estimate of the variance component �2
↵. Using this last

equation, we can show that an unbiased estimate of the intraclass correlation is given by

⇢̂I =
MSBG �MSWG

MSBG + (n� 1)MSWG
(12)

or, equivalently,

⇢̂I =
FBG � 1

(n� 1) + FBG
(13)

Notice that ⇢̂I < 0 when FBG < 1. On such occasions, it is standard practice to set ⇢̂I to zero.

10.2.2 power

To estimate power, we start by defining

frand =
�↵
�✏

(14)

frand is analogous to Cohen’s f , which is a measure of e↵ect size for fixed e↵ects. It is possible to show that
the ratio of the expected values of the between- and within-group means squares is

⇠(MSBG)

⇠(MSWG)
= (1 + nf2

rand )

where n is the number of subjects per group. (N.B. I will consider only the case where there are equal n per
group.)

When the null hypothesis is true, the ratio of between- and within-group mean squares will be distributed
as F with a � 1 and a(n � 1) degrees of freedom, where a is the number of groups. Let us define Fcritical as
the value of F that would lead to a rejection of the null hypothesis for a given level of ↵. In R, Fcritical can be
calculated using the command

> F.crit <- qf(1-alpha, df1=a-1, df2=a*(n-1))

Power refers to the probability that the observed value of F , or Fobs , exceeds Fcritical when the null hypothesis
is false. When the null hypothesis is false, Fobs is a random variable that is distributed as a multiple of a regular
F statistic that has a� 1 and a(n� 1) degrees of freedom. Specifically,

P [Fobs � X] = P


⇠(MSBG)

⇠(MSWG)
Fa�1, a(n�1) � X

�
= P [(1 + nf2

rand )Fa�1, a(n�1) � X]

If we let X = Fcritical , power can be calculated as

power = P
⇥
(1 + nf2

rand )Fa�1, a(n�1) � Fcritical

⇤

and therefore
power = P

⇥
Fa�1, a(n�1) � Fcritical/(1 + nf2

rand )
⇤

In R, this probability can be calculated with the pf() command:

> k <- ( 1+n*(f.rand^2) )

> the.power <- 1-pf(F.crit/k, df1=a-1, df2=a*(n-1))

3
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examples
1-way random anova

Random ANOVA & Variance Components (Dyestuff)
The Dyestuff data frame provides the yield of dyestuff (Naphthalene Black 12B) from 5 different preparations 
from each of 6 different batches of an intermediate product (H-acid). The Dyestuff2 data were generated data 
in the same structure but with a large residual variance relative to the batch variance.

> dye.aov.01 <- aov(Yield~Batch,data=Dyestuff)
> summary(dye.aov.01)
            Df Sum Sq Mean Sq F value Pr(>F)   
Batch        5  56358   11272   4.598 0.0044 **
Residuals   24  58830    2451                  
> MS.batch <- 11272
> MS.error <- 2451
> var.comp.error <- MS.error
> n <- 5 # observations per cell
> ( var.comp.batch <- (MS.batch - MS.error)/n )
[1] 1764.2
> sqrt(var(Dyestuff$Yield)) # SD of sample yield
[1] 63.02367
> sqrt(var.comp.batch + var.comp.error) # estimated pop SD of yield
[1] 64.92457

Random ANOVA & Variance Components (Dyestuff)
The Dyestuff data frame provides the yield of dyestuff (Naphthalene Black 12B) from 5 different preparations 
from each of 6 different batches of an intermediate product (H-acid). The Dyestuff2 data were generated data 
in the same structure but with a large residual variance relative to the batch variance.

> MS.batch <- 11272
> MS.error <- 2451
> var.comp.error <- MS.error
> n <- 5 # observations per cell
> ( var.comp.batch <- (MS.batch - MS.error)/n )
[1] 1764.2
> sqrt(var(Dyestuff$Yield)) # SD of sample yield
[1] 63.02367
> sqrt(var.comp.batch + var.comp.error) # estimated pop SD of yield
[1] 64.92457

> # unbiased estimate of variance ratio (theta)
> m <- 6 * (n-1) / (6 * (n-1) - 2)
> (11272 - m*2451) / (m*n*2451)
[1] 0.6431

> # association strength (ICC intraclass correlation):
> var.comp.batch / (var.comp.batch + var.comp.error)
[1] 0.4185

> options(contrasts=c(“contr.sum","contr.poly"))
> library(lmerTest)
> dye.lme <- lmer(Yield~(1|Batch),data=Dyestuff)
> ranova(dye.lme)
Model:
Yield ~ (1 | Batch)
            npar logLik AIC  LRT Df Pr(>Chisq)  
<none>         3   -160 326                     
(1 | Batch)    2   -163 330 6.37  1      0.012 *

> VarCorr(dye.lme)
 Groups   Name        Std.Dev.
 Batch    (Intercept) 42.0    
 Residual             49.5  
  
> ( ICC <- 42^2 / (42^2 + 49.5^2) ) # association strength
[1] 0.4186

Random ANOVA & Variance Components (Dyestuff) 
lmer in lmerTest package

# variance components



> library(VCA)
> dye.VCA <- anovaVCA(Yield~Batch,Data=Dyestuff) # note capital D in Data
> print(dye.VCA) # print, not summary
Result Variance Component Analysis:
-----------------------------------
  Name  DF        SS      MS      VC      %Total    SD        CV[%]   
1 total 15.101732                 4215.3  100       64.925342 4.250432
2 Batch 5         56357.5 11271.5 1764.05 41.848741 42.000595 2.74963 
3 error 24        58830   2451.25 2451.25 58.151259 49.5101   3.24125 
Mean: 1527.5 (N = 30) 
Experimental Design: balanced  |  Method: ANOVA

Random ANOVA & Variance Components (Dyestuff) 
anovaVCA in VCA package

> sd.batch <- 42
> sd.error <- 49.51
> # coefficients of variation
> ( CV.batch <- sd.batch/mean(Dyestuff$Yield) )
[1] 0.02749591
> ( CV.error <- sd.error/mean(Dyestuff$Yield) )
[1] 0.03241244

Coefficient of Variation intraclass correlation

2-Way Mixed ANOVA

2-way mixed ANOVA 
(A fixed; B random)

• A is fixed: alphas are constrained (sum-to-zero) 

• B is random: levels selected randomly 

- distributed normally with  and  

• AxB interaction effects are random 

- distributed normally with  and  

- sum of interaction effects across levels of fixed factor is zero 

- sum of interaction effects within levels of fixed factor may not be zero

μ = 0 var = σ2
β

μ = 0 var = σ2
(αβ)
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Residuals 24 58830 2451

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> var.comp.error <- 2451 # variance component preparations (i.e., error)

> n <- 5

> ( var.comp.batch <- (11272-2451) / 5 ) # variance component batch

[1] 1764.2

> var.comp.batch / var.comp.error

[1] 0.7197878

> var.comp.batch / (var.comp.batch + var.comp.error)

[1] 0.4185329

> sqrt(var.comp.batch + var.comp.error) # estimated population stand dev of yield

[1] 64.92457

> sd(Dyestuff$Yield) # sample stand dev of yield

[1] 63.02367

The e↵ect of Batch was significant (F (5, 24) = 4.59, p = 0.004), so we reject the null hypothesis that the variance
among batches is zero. Also, the estimated variance component for batch (1764.2) is 72% the size of the variance
among preparations (2451): in other words, variation among batches accounts for ⇡ 42% of the total variance

of yields. Finally, we note that the estimated standard deviation of yields, �̂yield = 64.9 =
q

�̂2
batch + �̂2

error is

similar to the sample standard deviation (63.02).

10.3 two-way factorial designs

10.3.1 mixed model

In this section we consider the analysis of an experiment that uses two factors that are crossed in a balanced
factorial design. Previously, we have considered the case where both factors are fixed; here we consider the
case where at least one of the factors is random. The full linear model for analyzing data collected in such
experiments is

Yijk = µ+ ↵j + �k + (↵�)jk + ✏ijk (15)

When one factor (A) is fixed and the other factor (B) is random, Equation 15 represents a mixed model. For the
mixed model (A fixed), the intercept, µ, is estimated by the grand mean of the scores. The e↵ect of treatment
aj (i.e., ↵j) is defined as in the fixed-e↵ects case and is subject to the constraint that the sum of ↵’s is zero. The
e↵ect of treatment bk is a random variable that is distributed normally with a mean of zero and a population
variance of �2

� . The interaction e↵ect, (↵�)jk, is a random variable distributed normally with a mean of zero

and a variance of �2
(↵�), with the constraint that the sum of interaction e↵ects across the levels of the fixed

factor is zero:
aX

j=1

(↵�)jk = 0

5

Effect of randomly sampling levels of a factor
• A = Therapy Mode (fixed) 

- all α’s equal zero 

• B = Clinical Trainee (random) 

- all β’s equal zero 
• AxB interaction effects (α,β) are not all zero 

- Across all possible levels, sum of (α,β)’s 
in each column & row = 0 

- When B is sampled, sum of (α,β)’s 
across levels of B may not be zero 

- AxB interaction leaks into main effect of 
A (i.e., the fixed factor)

Maxwell, Delaney & Kelly (2018)
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Table 3: Expected mean squares for mixed and random factorial designs.

Source ⇠(MS) A fixed; B random ⇠(MS) A & B random
A �2

✏ + n�2
(↵�) + bn

Pa
j=1 ↵

2
j/(a� 1) �2

✏ + n�2
(↵�) + bn�2

↵

B �2
✏ + an�2

� �2
✏ + n�2

(↵�) + an�2
�

A⇥B �2
✏ + n�2

(↵�) �2
✏ + n�2

(↵�)

Residuals �2
✏ �2

✏

main e↵ect of a fixed factor in a mixed design, the mean square of the fixed factor (MSA) is compared to the
mean square of the interaction (MSA⇥B), not mean square residuals (MSR).

The null and alternative hypotheses for the main e↵ect of the fixed factor, A, are

H0 : ↵j = 0 for all levels j

H1 : ↵j 6= 0 for at least one level j

The null and alternative hypotheses for the random factor, B, are

H0 : �2
� = 0

H1 : �2
� > 0

Finally, the F test for the A⇥B interaction evaluates the following hypotheses:

H0 : �2
(↵�) = 0

H1 : �2
(↵�) > 0

10.3.2 random-e↵ects model

We now consider the situation where the experiment contains two crossed, random factors. The full random-
e↵ects model is Equation 15, the same as the mixed model. However, unlike the mixed model, the e↵ect of aj
is a random variable distributed normally with a zero mean and a variance �2

↵. Table 3 also shows the expected
mean squares for the random-e↵ects model. In this case, both MSA and MSB contain a variance component
related to the A⇥B interaction (i.e., n�2

(↵�)), and therefore neither main e↵ect can be evaluated by comparing
the mean square to MSR. Instead, both random main e↵ects must be evaluated by comparing the mean squares
to MSA⇥B. The interaction term in a two-way, factorial random design can still be evaluated by comparing
MSA⇥B to MSR. The F test for the main e↵ect of A evaluates the following null and alternative hypotheses:

H0 : �2
↵ = 0

H1 : �2
↵ > 0

The F tests for B and A⇥B evaluate the same null hypotheses that were tested in the mixed model.

10.3.3 strength of association

For two-factor designs, the recommended indices of association strength for fixed and random factors are,
respectively, partial omega-squared and partial intraclass correlation. If A is fixed and B is random, then
partial omega-squared for the fixed factor A is

!2
A,partial =

Pa
j=1(↵

2
j/a)

�2
✏ +

Pa
j=1(↵

2
j/a)
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Table 3: Expected mean squares for mixed and random factorial designs.
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main e↵ect of a fixed factor in a mixed design, the mean square of the fixed factor (MSA) is compared to the
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The F tests for B and A⇥B evaluate the same null hypotheses that were tested in the mixed model.
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Table 3: Expected mean squares for mixed and random factorial designs.
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main e↵ect of a fixed factor in a mixed design, the mean square of the fixed factor (MSA) is compared to the
mean square of the interaction (MSA⇥B), not mean square residuals (MSR).
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the mean square to MSR. Instead, both random main e↵ects must be evaluated by comparing the mean squares
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MSA⇥B to MSR. The F test for the main e↵ect of A evaluates the following null and alternative hypotheses:

H0 : �2
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H1 : �2
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The F tests for B and A⇥B evaluate the same null hypotheses that were tested in the mixed model.
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and is estimated by

!̂2
A,partial =

(a� 1)(FA � 1)

(a� 1)(FA � 1) + nab

The partial intraclass correlations for the random components B and A⇥B are

⇢I:B ,partial =
�2
�

�2
� + �2

✏

⇢I:AB ,partial =
�2
(↵�)

�2
(↵�) + �2

✏

Estimates of the partial intraclass correlations can be obtained from estimates of the variance components,
which in turn can be derived from values in the ANOVA table. When A is fixed and B is random, the variance
components for B, A⇥B, and the error term are

�2
� =

MSB �MSR
na

�2
(↵�) =

MSA⇥B �MSR
n

�2
✏ = MSR

When A and B are both random, the expected values of the mean squares change – now the values for both
main e↵ects are influenced by the A⇥B interaction (see Table 3) – and therefore the variance components are
calculated with the following formulae:

�2
↵ =

MSA �MSA⇥B

nb

�2
� =

MSB �MSA⇥B

na

�2
(↵�) =

MSA⇥B �MSR
n

�2
✏ = MSR

Note that it is possible for these so-called ANOVA estimates of variance components to be negative, and therefore
for intraclass correlations to be less than zero. Such values cannot correspond to the true population values
because variances must be equal to or greater than zero, and the true intraclass correlation must be between
zero and 1 (inclusive). Therefore, when the estimated association strength is less than zero, it is standard
practice to set it to zero.

10.3.4 R example

This example uses data shown in Table 5 of your textbook (page 482). The data come from a fictitious study
that examined the e↵ectiveness of two programs to prepare high-school students for US-college entrance exams.
One study program uses a traditional package of written materials, whereas the other is based on an interactive
computer program. The experiment compared the two study programs in four randomly selected schools. The
type of program is represented by the fixed factor study, but schools is a random factor. Hence, we will use
a mixed model to analyze these data.
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Example (ACT Experiment) 
mixed-effect ANOVA

• study compared 2 programs to prepare for ACT 
• crossed-factorial design: 
- schools (random) x study program (fixed)

> mw.act <- read.table("chapter_10_table_5.dat")
> names(mw.act)<-c("study","school","score")
> # study: fixed; school: random
> mw.act$study<-factor(mw.act$study,labels=c("computer","standard"))
> mw.act$school<-factor(mw.act$school,labels="s")
> with(mw.act,tapply(score,list(study,school),length))
         s1 s2 s3 s4
computer  5  5  5  5
standard  5  5  5  5

Example (ACT Experiment) 
mixed-effect ANOVA

> options(contrasts=c("contr.sum","contr.poly"))
> summary(aov(score~study+school+study:school,data=mw.act))
             Df Sum Sq Mean Sq F value   Pr(>F)    
study         1    360   360.0  19.931 9.35e-05 ***
school        3    100    33.3   1.845    0.159    
study:school  3     80    26.7   1.476    0.240    
Residuals    32    578    18.1                     
> MS.study <- 360
> MS.AxB <- 26.67
> df.AxB <- 3
> ( F.study <- MS.study/MS.AxB )
[1] 13.49831
> ( p.study <- 1-pf(F.study,1,df.AxB))
[1] 0.03490257
> ( var.comp.school <- (33.33-26.67)/(2*5))
[1] 0.666
> ( var.comp.schoolxstudy <- (26.67-18.06)/5)
[1] 1.722

• very small variance components 
• this result may be interesting/important

recalculate F & p for fixed effect

Example (ACT Experiment) 
mixed-effect ANOVA with lmer

> require(lmerTest)
> act.lme.01 <- lmer(score ~ study + (1|school) + (1|study:school),data=mw.act)

> anova(act.lme.01)
Type III Analysis of Variance Table with Satterthwaite's method
      Sum Sq Mean Sq NumDF DenDF F value Pr(>F)  
study 243.84  243.84     1     3    13.5 0.0349 *

Fixed Effect ANOVA



Example (ACT Experiment) 
mixed-effect ANOVA with lmer

Variance Components

dropping random effects does 
NOT change fit significantly

> require(lmerTest)
> act.lme.01 <- lmer(score ~ study + (1|school) + (1|study:school),data=mw.act)

> VarCorr(school.lme) # var components as std dev
 Groups       Name        Std.Dev.
 study:school (Intercept) 1.312   
 school       (Intercept) 0.817   
 Residual                 4.250 
  

> ranova(school.lme) # significance tests
ANOVA-like table for random-effects: Single term deletions
Model:
score ~ study + (1 | school) + (1 | study:school)
                   npar logLik AIC    LRT Df Pr(>Chisq)
<none>                5   -114 238                     
(1 | school)          4   -114 236 0.0373  1       0.85
(1 | study:school)    4   -114 236 0.2319  1       0.63

> # association strength for random effects
> library(performance)
> icc(school.lme,by_group=T)
# ICC by Group
Group        |   ICC
--------------------
study:school | 0.084
school       | 0.033

> # association strength for fixed effects
> library(effectsize)
> omega_squared(school.lme)
# Effect Size for ANOVA (Type III)

Parameter | Omega2 (partial) |       95% CI
-------------------------------------------
study     |             0.71 | [0.00, 1.00]

Example (ACT Experiment) 
mixed-effect ANOVA with lmer

Example (ACT Experiment) 
mixed-effect ANOVA [variance components calculated with anovaMM]

> require(VCA)
> act.MM <- anovaMM(score~study + (school) + (study:school),Data=mw.act)
> print(act.MM,digits=3)
ANOVA-Type Estimation of Mixed Model:
--------------------------------------

[Fixed Effects]
          int studycomputer studystandard 
           27            -6             0 

[Variance Components]
  Name         DF     SS  MS     VC     %Total SD    CV[%] 
1 total        33.193            20.45  100    4.522 18.842
2 school       3      100 33.333 0.667  3.26   0.816 3.402 
3 study:school 3      80  26.667 1.721  8.415  1.312 5.466 
4 error        32     578 18.062 18.062 88.325 4.25  17.708

Mean: 24 (N = 40) 
Experimental Design: balanced  |  Method: ANOVA

ICC
2-Way Random ANOVA



2-way random ANOVA 
(A & B random)

• A & B are random:  

- distributed normally with μ=0 and var=σ2β 

• interaction effects are random 

- distributed normally with  μ=0 and var=σ2(αβ) 

• main effects evaluated by comparing MSA & MSB to MSAxB 

• interaction evaluated  by comparing MSAxB to MSresiduals  
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Residuals 24 58830 2451

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> var.comp.error <- 2451 # variance component preparations (i.e., error)

> n <- 5

> ( var.comp.batch <- (11272-2451) / 5 ) # variance component batch

[1] 1764.2

> var.comp.batch / var.comp.error

[1] 0.7197878

> var.comp.batch / (var.comp.batch + var.comp.error)

[1] 0.4185329

> sqrt(var.comp.batch + var.comp.error) # estimated population stand dev of yield

[1] 64.92457

> sd(Dyestuff$Yield) # sample stand dev of yield

[1] 63.02367

The e↵ect of Batch was significant (F (5, 24) = 4.59, p = 0.004), so we reject the null hypothesis that the variance
among batches is zero. Also, the estimated variance component for batch (1764.2) is 72% the size of the variance
among preparations (2451): in other words, variation among batches accounts for ⇡ 42% of the total variance

of yields. Finally, we note that the estimated standard deviation of yields, �̂yield = 64.9 =
q

�̂2
batch + �̂2

error is

similar to the sample standard deviation (63.02).

10.3 two-way factorial designs

10.3.1 mixed model

In this section we consider the analysis of an experiment that uses two factors that are crossed in a balanced
factorial design. Previously, we have considered the case where both factors are fixed; here we consider the
case where at least one of the factors is random. The full linear model for analyzing data collected in such
experiments is

Yijk = µ+ ↵j + �k + (↵�)jk + ✏ijk (15)

When one factor (A) is fixed and the other factor (B) is random, Equation 15 represents a mixed model. For the
mixed model (A fixed), the intercept, µ, is estimated by the grand mean of the scores. The e↵ect of treatment
aj (i.e., ↵j) is defined as in the fixed-e↵ects case and is subject to the constraint that the sum of ↵’s is zero. The
e↵ect of treatment bk is a random variable that is distributed normally with a mean of zero and a population
variance of �2

� . The interaction e↵ect, (↵�)jk, is a random variable distributed normally with a mean of zero

and a variance of �2
(↵�), with the constraint that the sum of interaction e↵ects across the levels of the fixed

factor is zero:
aX

j=1

(↵�)jk = 0
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Table 3: Expected mean squares for mixed and random factorial designs.

Source ⇠(MS) A fixed; B random ⇠(MS) A & B random
A �2

✏ + n�2
(↵�) + bn

Pa
j=1 ↵

2
j/(a� 1) �2

✏ + n�2
(↵�) + bn�2

↵

B �2
✏ + an�2

� �2
✏ + n�2

(↵�) + an�2
�

A⇥B �2
✏ + n�2

(↵�) �2
✏ + n�2

(↵�)

Residuals �2
✏ �2

✏

main e↵ect of a fixed factor in a mixed design, the mean square of the fixed factor (MSA) is compared to the
mean square of the interaction (MSA⇥B), not mean square residuals (MSR).

The null and alternative hypotheses for the main e↵ect of the fixed factor, A, are

H0 : ↵j = 0 for all levels j

H1 : ↵j 6= 0 for at least one level j

The null and alternative hypotheses for the random factor, B, are

H0 : �2
� = 0

H1 : �2
� > 0

Finally, the F test for the A⇥B interaction evaluates the following hypotheses:

H0 : �2
(↵�) = 0

H1 : �2
(↵�) > 0

10.3.2 random-e↵ects model

We now consider the situation where the experiment contains two crossed, random factors. The full random-
e↵ects model is Equation 15, the same as the mixed model. However, unlike the mixed model, the e↵ect of aj
is a random variable distributed normally with a zero mean and a variance �2

↵. Table 3 also shows the expected
mean squares for the random-e↵ects model. In this case, both MSA and MSB contain a variance component
related to the A⇥B interaction (i.e., n�2

(↵�)), and therefore neither main e↵ect can be evaluated by comparing
the mean square to MSR. Instead, both random main e↵ects must be evaluated by comparing the mean squares
to MSA⇥B. The interaction term in a two-way, factorial random design can still be evaluated by comparing
MSA⇥B to MSR. The F test for the main e↵ect of A evaluates the following null and alternative hypotheses:

H0 : �2
↵ = 0

H1 : �2
↵ > 0

The F tests for B and A⇥B evaluate the same null hypotheses that were tested in the mixed model.

10.3.3 strength of association

For two-factor designs, the recommended indices of association strength for fixed and random factors are,
respectively, partial omega-squared and partial intraclass correlation. If A is fixed and B is random, then
partial omega-squared for the fixed factor A is

!2
A,partial =

Pa
j=1(↵

2
j/a)

�2
✏ +

Pa
j=1(↵

2
j/a)

7

Bennett, PJ PSY710 Chapter 10

Table 3: Expected mean squares for mixed and random factorial designs.

Source ⇠(MS) A fixed; B random ⇠(MS) A & B random
A �2

✏ + n�2
(↵�) + bn

Pa
j=1 ↵

2
j/(a� 1) �2

✏ + n�2
(↵�) + bn�2

↵

B �2
✏ + an�2

� �2
✏ + n�2

(↵�) + an�2
�

A⇥B �2
✏ + n�2

(↵�) �2
✏ + n�2

(↵�)

Residuals �2
✏ �2

✏

main e↵ect of a fixed factor in a mixed design, the mean square of the fixed factor (MSA) is compared to the
mean square of the interaction (MSA⇥B), not mean square residuals (MSR).

The null and alternative hypotheses for the main e↵ect of the fixed factor, A, are

H0 : ↵j = 0 for all levels j

H1 : ↵j 6= 0 for at least one level j

The null and alternative hypotheses for the random factor, B, are

H0 : �2
� = 0

H1 : �2
� > 0

Finally, the F test for the A⇥B interaction evaluates the following hypotheses:

H0 : �2
(↵�) = 0

H1 : �2
(↵�) > 0

10.3.2 random-e↵ects model

We now consider the situation where the experiment contains two crossed, random factors. The full random-
e↵ects model is Equation 15, the same as the mixed model. However, unlike the mixed model, the e↵ect of aj
is a random variable distributed normally with a zero mean and a variance �2

↵. Table 3 also shows the expected
mean squares for the random-e↵ects model. In this case, both MSA and MSB contain a variance component
related to the A⇥B interaction (i.e., n�2

(↵�)), and therefore neither main e↵ect can be evaluated by comparing
the mean square to MSR. Instead, both random main e↵ects must be evaluated by comparing the mean squares
to MSA⇥B. The interaction term in a two-way, factorial random design can still be evaluated by comparing
MSA⇥B to MSR. The F test for the main e↵ect of A evaluates the following null and alternative hypotheses:

H0 : �2
↵ = 0

H1 : �2
↵ > 0

The F tests for B and A⇥B evaluate the same null hypotheses that were tested in the mixed model.

10.3.3 strength of association

For two-factor designs, the recommended indices of association strength for fixed and random factors are,
respectively, partial omega-squared and partial intraclass correlation. If A is fixed and B is random, then
partial omega-squared for the fixed factor A is

!2
A,partial =

Pa
j=1(↵

2
j/a)

�2
✏ +

Pa
j=1(↵

2
j/a)
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H0 : σ2
α = 0

H1 : σ2
α > 0

2-way random ANOVA 
(A & B random)

• A & B are random:  

- distributed normally with μ=0 and var=σ2β 

• interaction effects are random 

- distributed normally with  μ=0 and var=σ2(αβ) 

• main effects evaluated by comparing MSA & MSB to MSAxB 

• interaction evaluated  by comparing MSAxB to MSresiduals  
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Residuals 24 58830 2451

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> var.comp.error <- 2451 # variance component preparations (i.e., error)

> n <- 5

> ( var.comp.batch <- (11272-2451) / 5 ) # variance component batch

[1] 1764.2

> var.comp.batch / var.comp.error

[1] 0.7197878

> var.comp.batch / (var.comp.batch + var.comp.error)

[1] 0.4185329

> sqrt(var.comp.batch + var.comp.error) # estimated population stand dev of yield

[1] 64.92457

> sd(Dyestuff$Yield) # sample stand dev of yield

[1] 63.02367

The e↵ect of Batch was significant (F (5, 24) = 4.59, p = 0.004), so we reject the null hypothesis that the variance
among batches is zero. Also, the estimated variance component for batch (1764.2) is 72% the size of the variance
among preparations (2451): in other words, variation among batches accounts for ⇡ 42% of the total variance

of yields. Finally, we note that the estimated standard deviation of yields, �̂yield = 64.9 =
q

�̂2
batch + �̂2

error is

similar to the sample standard deviation (63.02).

10.3 two-way factorial designs

10.3.1 mixed model

In this section we consider the analysis of an experiment that uses two factors that are crossed in a balanced
factorial design. Previously, we have considered the case where both factors are fixed; here we consider the
case where at least one of the factors is random. The full linear model for analyzing data collected in such
experiments is

Yijk = µ+ ↵j + �k + (↵�)jk + ✏ijk (15)

When one factor (A) is fixed and the other factor (B) is random, Equation 15 represents a mixed model. For the
mixed model (A fixed), the intercept, µ, is estimated by the grand mean of the scores. The e↵ect of treatment
aj (i.e., ↵j) is defined as in the fixed-e↵ects case and is subject to the constraint that the sum of ↵’s is zero. The
e↵ect of treatment bk is a random variable that is distributed normally with a mean of zero and a population
variance of �2

� . The interaction e↵ect, (↵�)jk, is a random variable distributed normally with a mean of zero

and a variance of �2
(↵�), with the constraint that the sum of interaction e↵ects across the levels of the fixed

factor is zero:
aX

j=1

(↵�)jk = 0
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Table 3: Expected mean squares for mixed and random factorial designs.

Source ⇠(MS) A fixed; B random ⇠(MS) A & B random
A �2

✏ + n�2
(↵�) + bn

Pa
j=1 ↵

2
j/(a� 1) �2

✏ + n�2
(↵�) + bn�2

↵

B �2
✏ + an�2

� �2
✏ + n�2

(↵�) + an�2
�

A⇥B �2
✏ + n�2

(↵�) �2
✏ + n�2

(↵�)

Residuals �2
✏ �2

✏

main e↵ect of a fixed factor in a mixed design, the mean square of the fixed factor (MSA) is compared to the
mean square of the interaction (MSA⇥B), not mean square residuals (MSR).

The null and alternative hypotheses for the main e↵ect of the fixed factor, A, are

H0 : ↵j = 0 for all levels j

H1 : ↵j 6= 0 for at least one level j

The null and alternative hypotheses for the random factor, B, are

H0 : �2
� = 0

H1 : �2
� > 0

Finally, the F test for the A⇥B interaction evaluates the following hypotheses:

H0 : �2
(↵�) = 0

H1 : �2
(↵�) > 0

10.3.2 random-e↵ects model

We now consider the situation where the experiment contains two crossed, random factors. The full random-
e↵ects model is Equation 15, the same as the mixed model. However, unlike the mixed model, the e↵ect of aj
is a random variable distributed normally with a zero mean and a variance �2

↵. Table 3 also shows the expected
mean squares for the random-e↵ects model. In this case, both MSA and MSB contain a variance component
related to the A⇥B interaction (i.e., n�2

(↵�)), and therefore neither main e↵ect can be evaluated by comparing
the mean square to MSR. Instead, both random main e↵ects must be evaluated by comparing the mean squares
to MSA⇥B. The interaction term in a two-way, factorial random design can still be evaluated by comparing
MSA⇥B to MSR. The F test for the main e↵ect of A evaluates the following null and alternative hypotheses:

H0 : �2
↵ = 0

H1 : �2
↵ > 0

The F tests for B and A⇥B evaluate the same null hypotheses that were tested in the mixed model.

10.3.3 strength of association

For two-factor designs, the recommended indices of association strength for fixed and random factors are,
respectively, partial omega-squared and partial intraclass correlation. If A is fixed and B is random, then
partial omega-squared for the fixed factor A is

!2
A,partial =

Pa
j=1(↵

2
j/a)

�2
✏ +

Pa
j=1(↵

2
j/a)
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Table 3: Expected mean squares for mixed and random factorial designs.

Source ⇠(MS) A fixed; B random ⇠(MS) A & B random
A �2

✏ + n�2
(↵�) + bn

Pa
j=1 ↵

2
j/(a� 1) �2

✏ + n�2
(↵�) + bn�2

↵

B �2
✏ + an�2

� �2
✏ + n�2

(↵�) + an�2
�

A⇥B �2
✏ + n�2

(↵�) �2
✏ + n�2

(↵�)

Residuals �2
✏ �2

✏

main e↵ect of a fixed factor in a mixed design, the mean square of the fixed factor (MSA) is compared to the
mean square of the interaction (MSA⇥B), not mean square residuals (MSR).

The null and alternative hypotheses for the main e↵ect of the fixed factor, A, are

H0 : ↵j = 0 for all levels j

H1 : ↵j 6= 0 for at least one level j

The null and alternative hypotheses for the random factor, B, are

H0 : �2
� = 0

H1 : �2
� > 0

Finally, the F test for the A⇥B interaction evaluates the following hypotheses:

H0 : �2
(↵�) = 0

H1 : �2
(↵�) > 0

10.3.2 random-e↵ects model

We now consider the situation where the experiment contains two crossed, random factors. The full random-
e↵ects model is Equation 15, the same as the mixed model. However, unlike the mixed model, the e↵ect of aj
is a random variable distributed normally with a zero mean and a variance �2

↵. Table 3 also shows the expected
mean squares for the random-e↵ects model. In this case, both MSA and MSB contain a variance component
related to the A⇥B interaction (i.e., n�2

(↵�)), and therefore neither main e↵ect can be evaluated by comparing
the mean square to MSR. Instead, both random main e↵ects must be evaluated by comparing the mean squares
to MSA⇥B. The interaction term in a two-way, factorial random design can still be evaluated by comparing
MSA⇥B to MSR. The F test for the main e↵ect of A evaluates the following null and alternative hypotheses:

H0 : �2
↵ = 0

H1 : �2
↵ > 0

The F tests for B and A⇥B evaluate the same null hypotheses that were tested in the mixed model.

10.3.3 strength of association

For two-factor designs, the recommended indices of association strength for fixed and random factors are,
respectively, partial omega-squared and partial intraclass correlation. If A is fixed and B is random, then
partial omega-squared for the fixed factor A is

!2
A,partial =

Pa
j=1(↵

2
j/a)

�2
✏ +

Pa
j=1(↵

2
j/a)
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2-way random ANOVA 
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• A & B are random:  

- distributed normally with μ=0 and var=σ2β 

• interaction effects are random 

- distributed normally with  μ=0 and var=σ2(αβ) 

• main effects evaluated by comparing MSA & MSB to MSAxB 

• interaction evaluated  by comparing MSAxB to MSresiduals  
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Residuals 24 58830 2451

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> var.comp.error <- 2451 # variance component preparations (i.e., error)

> n <- 5

> ( var.comp.batch <- (11272-2451) / 5 ) # variance component batch

[1] 1764.2

> var.comp.batch / var.comp.error

[1] 0.7197878

> var.comp.batch / (var.comp.batch + var.comp.error)

[1] 0.4185329

> sqrt(var.comp.batch + var.comp.error) # estimated population stand dev of yield

[1] 64.92457

> sd(Dyestuff$Yield) # sample stand dev of yield

[1] 63.02367

The e↵ect of Batch was significant (F (5, 24) = 4.59, p = 0.004), so we reject the null hypothesis that the variance
among batches is zero. Also, the estimated variance component for batch (1764.2) is 72% the size of the variance
among preparations (2451): in other words, variation among batches accounts for ⇡ 42% of the total variance

of yields. Finally, we note that the estimated standard deviation of yields, �̂yield = 64.9 =
q

�̂2
batch + �̂2

error is

similar to the sample standard deviation (63.02).

10.3 two-way factorial designs

10.3.1 mixed model

In this section we consider the analysis of an experiment that uses two factors that are crossed in a balanced
factorial design. Previously, we have considered the case where both factors are fixed; here we consider the
case where at least one of the factors is random. The full linear model for analyzing data collected in such
experiments is

Yijk = µ+ ↵j + �k + (↵�)jk + ✏ijk (15)

When one factor (A) is fixed and the other factor (B) is random, Equation 15 represents a mixed model. For the
mixed model (A fixed), the intercept, µ, is estimated by the grand mean of the scores. The e↵ect of treatment
aj (i.e., ↵j) is defined as in the fixed-e↵ects case and is subject to the constraint that the sum of ↵’s is zero. The
e↵ect of treatment bk is a random variable that is distributed normally with a mean of zero and a population
variance of �2

� . The interaction e↵ect, (↵�)jk, is a random variable distributed normally with a mean of zero

and a variance of �2
(↵�), with the constraint that the sum of interaction e↵ects across the levels of the fixed

factor is zero:
aX

j=1

(↵�)jk = 0
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Table 3: Expected mean squares for mixed and random factorial designs.

Source ⇠(MS) A fixed; B random ⇠(MS) A & B random
A �2

✏ + n�2
(↵�) + bn

Pa
j=1 ↵

2
j/(a� 1) �2

✏ + n�2
(↵�) + bn�2

↵

B �2
✏ + an�2

� �2
✏ + n�2

(↵�) + an�2
�

A⇥B �2
✏ + n�2

(↵�) �2
✏ + n�2

(↵�)

Residuals �2
✏ �2

✏

main e↵ect of a fixed factor in a mixed design, the mean square of the fixed factor (MSA) is compared to the
mean square of the interaction (MSA⇥B), not mean square residuals (MSR).

The null and alternative hypotheses for the main e↵ect of the fixed factor, A, are

H0 : ↵j = 0 for all levels j

H1 : ↵j 6= 0 for at least one level j

The null and alternative hypotheses for the random factor, B, are

H0 : �2
� = 0

H1 : �2
� > 0

Finally, the F test for the A⇥B interaction evaluates the following hypotheses:

H0 : �2
(↵�) = 0

H1 : �2
(↵�) > 0

10.3.2 random-e↵ects model

We now consider the situation where the experiment contains two crossed, random factors. The full random-
e↵ects model is Equation 15, the same as the mixed model. However, unlike the mixed model, the e↵ect of aj
is a random variable distributed normally with a zero mean and a variance �2

↵. Table 3 also shows the expected
mean squares for the random-e↵ects model. In this case, both MSA and MSB contain a variance component
related to the A⇥B interaction (i.e., n�2

(↵�)), and therefore neither main e↵ect can be evaluated by comparing
the mean square to MSR. Instead, both random main e↵ects must be evaluated by comparing the mean squares
to MSA⇥B. The interaction term in a two-way, factorial random design can still be evaluated by comparing
MSA⇥B to MSR. The F test for the main e↵ect of A evaluates the following null and alternative hypotheses:

H0 : �2
↵ = 0

H1 : �2
↵ > 0

The F tests for B and A⇥B evaluate the same null hypotheses that were tested in the mixed model.

10.3.3 strength of association

For two-factor designs, the recommended indices of association strength for fixed and random factors are,
respectively, partial omega-squared and partial intraclass correlation. If A is fixed and B is random, then
partial omega-squared for the fixed factor A is

!2
A,partial =

Pa
j=1(↵

2
j/a)

�2
✏ +

Pa
j=1(↵

2
j/a)
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Table 3: Expected mean squares for mixed and random factorial designs.

Source ⇠(MS) A fixed; B random ⇠(MS) A & B random
A �2

✏ + n�2
(↵�) + bn
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✏ �2

✏

main e↵ect of a fixed factor in a mixed design, the mean square of the fixed factor (MSA) is compared to the
mean square of the interaction (MSA⇥B), not mean square residuals (MSR).

The null and alternative hypotheses for the main e↵ect of the fixed factor, A, are

H0 : ↵j = 0 for all levels j

H1 : ↵j 6= 0 for at least one level j

The null and alternative hypotheses for the random factor, B, are

H0 : �2
� = 0

H1 : �2
� > 0

Finally, the F test for the A⇥B interaction evaluates the following hypotheses:

H0 : �2
(↵�) = 0

H1 : �2
(↵�) > 0

10.3.2 random-e↵ects model

We now consider the situation where the experiment contains two crossed, random factors. The full random-
e↵ects model is Equation 15, the same as the mixed model. However, unlike the mixed model, the e↵ect of aj
is a random variable distributed normally with a zero mean and a variance �2

↵. Table 3 also shows the expected
mean squares for the random-e↵ects model. In this case, both MSA and MSB contain a variance component
related to the A⇥B interaction (i.e., n�2

(↵�)), and therefore neither main e↵ect can be evaluated by comparing
the mean square to MSR. Instead, both random main e↵ects must be evaluated by comparing the mean squares
to MSA⇥B. The interaction term in a two-way, factorial random design can still be evaluated by comparing
MSA⇥B to MSR. The F test for the main e↵ect of A evaluates the following null and alternative hypotheses:

H0 : �2
↵ = 0

H1 : �2
↵ > 0

The F tests for B and A⇥B evaluate the same null hypotheses that were tested in the mixed model.

10.3.3 strength of association

For two-factor designs, the recommended indices of association strength for fixed and random factors are,
respectively, partial omega-squared and partial intraclass correlation. If A is fixed and B is random, then
partial omega-squared for the fixed factor A is

!2
A,partial =

Pa
j=1(↵

2
j/a)

�2
✏ +

Pa
j=1(↵

2
j/a)

7

H0 : σ2
(αβ) = 0

H1 : σ2
(αβ) > 0

strength of association 
random 2-way ANOVA
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and is estimated by

!̂2
A,partial =

(a� 1)(FA � 1)

(a� 1)(FA � 1) + nab

The partial intraclass correlations for the random components B and A⇥B are

⇢I:B ,partial =
�2
�

�2
� + �2

✏

⇢I:AB ,partial =
�2
(↵�)

�2
(↵�) + �2

✏

Estimates of the partial intraclass correlations can be obtained from estimates of the variance components,
which in turn can be derived from values in the ANOVA table. When A is fixed and B is random, the variance
components for B, A⇥B, and the error term are

�2
� =

MSB �MSR
na

�2
(↵�) =

MSA⇥B �MSR
n

�2
✏ = MSR

When A and B are both random, the expected values of the mean squares change – now the values for both
main e↵ects are influenced by the A⇥B interaction (see Table 3) – and therefore the variance components are
calculated with the following formulae:

�2
↵ =

MSA �MSA⇥B

nb

�2
� =

MSB �MSA⇥B

na

�2
(↵�) =

MSA⇥B �MSR
n

�2
✏ = MSR

Note that it is possible for these so-called ANOVA estimates of variance components to be negative, and therefore
for intraclass correlations to be less than zero. Such values cannot correspond to the true population values
because variances must be equal to or greater than zero, and the true intraclass correlation must be between
zero and 1 (inclusive). Therefore, when the estimated association strength is less than zero, it is standard
practice to set it to zero.

10.3.4 R example

This example uses data shown in Table 5 of your textbook (page 482). The data come from a fictitious study
that examined the e↵ectiveness of two programs to prepare high-school students for US-college entrance exams.
One study program uses a traditional package of written materials, whereas the other is based on an interactive
computer program. The experiment compared the two study programs in four randomly selected schools. The
type of program is represented by the fixed factor study, but schools is a random factor. Hence, we will use
a mixed model to analyze these data.
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σ2

α

σ2
α + σ2
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Example (ACT Experiment) 
two-way random ANOVA
> options(contrasts=c("contr.sum","contr.poly"))
> act.aov.01 <- aov(score~study+school+study:school,data=mw.act)
> summary(act.aov.01)
             Df Sum Sq Mean Sq F value  Pr(>F)    
study         1    360     360   19.93 9.4e-05 ***
school        3    100      33    1.85    0.16    
study:school  3     80      27    1.48    0.24    
Residuals    32    578      18                    
> # assume both factors are random:
> MS.axb <- 26.7
> (F.study <- 360/MS.axb)
[1] 13.48
> (p.study <- 1-pf(F.study,1,3))
[1] 0.03495
> (F.school <- 33.3/MS.axb)
[1] 1.247
> (p.school <- 1-pf(F.school,3,3))
[1] 0.4301

recalculate F & p for both main effects

Example (ACT Experiment) 
ANOVA variance components

> xtabs(~school+study,data=mw.act)
               study
school computer standard
    s1        5        5
    s2        5        5
    s3        5        5
    s4        5        5
> # variance components
> a <- 4 # levels of schools
> b <- 2 # levels of study
> n <- 5 # per group
> ( var.comp.school <- (33-27)/(n*b))
[1] 0.6
> ( var.comp.study <- (360-27)/(n*a))
[1] 16.65
> ( var.comp.study_x_school <- (27-18)/n )
[1] 1.8
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and is estimated by

!̂2
A,partial =

(a� 1)(FA � 1)
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Note that it is possible for these so-called ANOVA estimates of variance components to be negative, and therefore
for intraclass correlations to be less than zero. Such values cannot correspond to the true population values
because variances must be equal to or greater than zero, and the true intraclass correlation must be between
zero and 1 (inclusive). Therefore, when the estimated association strength is less than zero, it is standard
practice to set it to zero.

10.3.4 R example

This example uses data shown in Table 5 of your textbook (page 482). The data come from a fictitious study
that examined the e↵ectiveness of two programs to prepare high-school students for US-college entrance exams.
One study program uses a traditional package of written materials, whereas the other is based on an interactive
computer program. The experiment compared the two study programs in four randomly selected schools. The
type of program is represented by the fixed factor study, but schools is a random factor. Hence, we will use
a mixed model to analyze these data.
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• 2 of these variance components are small

Example (ACT Experiment) 
ANOVA variance components

> library(VCA)
> anovaVCA(score ~ 1 + study*school,Data=mw.act)

Result Variance Component Analysis:
-----------------------------------

  Name         DF       SS  MS        VC        %Total    SD       CV[%]    
1 total        4.114573               37.116667 100       6.092345 25.384771
2 study        1        360 360       16.666667 44.903458 4.082483 17.010345
3 school       3        100 33.333333 0.666667  1.796138  0.816497 3.402069 
4 study:school 3        80  26.666667 1.720833  4.636282  1.311805 5.465856 
5 error        32       578 18.0625   18.0625   48.664122 4.25     17.708333

Mean: 24 (N = 40) 

Experimental Design: balanced  |  Method: ANOVA

Example (ACT Experiment) 
two-way random factorial (with lmer)
> # with lmer
> library(lmerTest)
> options(contrasts=c("contr.sum","contr.poly"))
> act.lme <- lmer(score ~ 1 + (1|study) + (1|school) + (1|study:school),data=mw.act)

> print(VarCorr(act.lme),comp="Variance")
 Groups       Name        Variance
 study:school (Intercept)  1.721  
 school       (Intercept)  0.667  
 study        (Intercept) 16.667  
 Residual                 18.062  

one of the random effects 
might be zero

> ranova(act.lme)
boundary (singular) fit: see ?isSingular
Model:
score ~ (1 | study) + (1 | school) + (1 | study:school)
                   npar logLik AIC  LRT Df Pr(>Chisq)  
<none>                5   -117 243                     
(1 | study)           4   -119 245 4.16  1      0.041 *
(1 | school)          4   -117 241 0.04  1      0.847  
(1 | study:school)    4   -117 242 0.23  1      0.630  



Nested Factors

Nested Experimental Design

• Factor B is nested within factor A 

- if each level of B occurs within only one level of A 

• Nesting often is a result of sampling strategy
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The association strength for the fixed e↵ect is

!̂2
study,partial =

(2� 1)(13.49� 1)

(2� 1)(13.49� 1) + 5⇥ 2⇥ 4
= 0.237

and the e↵ect size is

f̂study =

r
0.237

1� .237
= 0.56

This is a large e↵ect.

10.4 Nested Factors

A factor is said to be nested within another factor if each level of the first factor occurs in conjunction with
only one level of the second factor. So B is nested within A if each level of B occurs within only one level of
A. An example of a design in which B is nested within A that uses n = 6 subjects per cell is shown in Table
4. Notice that b1�3 occur only with a1, whereas b4�6 occur only with a2. A nested design can be thought of as
a factorial design that is missing some cells. Obviously, the fact that some cells are missing means that some
parameters of the full model for factorial designs (Equation 1) cannot be estimated. For instance, there is no
way to estimate the A⇥B interaction because some of the combinations of A and B are missing.

The full model for a nested design (i.e., B nested within A) is

Yijk = µ+ ↵j + �k/j + ✏ijk (19)

↵j is defined as it has been in all previous models: it represents the di↵erence between the marginal mean of
level aj and the grand mean (i.e., ↵j = µj. � µ). The term for the nested e↵ect, �k/j , is defined as

�k/j = µjk � µj.

which is the di↵erence between a cell mean and the marginal mean for the non-nested factor in which the cell
appears. Another way of describing �k/j is to say that it is the simple e↵ect of the k-th level of B (the nested
factor) in the j-th level of A (the non-nested factor). The error term, ✏ijk, is a normally distributed random
variable with a mean of zero and a population variance of �2

e . Notice that Equation 19 does not include an
interaction term.

Table 4: Example of a nested design.

b1 b2 b3 b4 b5 b6
a1 6 6 6 x x x
a2 x x x 6 6 6

The sum of squares for the e↵ects in Equation 19 are calculated the standard way, namely by constructing
reduced models that have the e↵ects of interest set to zero, and then calculating the change in the sum of
squared residuals. For the nested term, the sum of squares is denoted by SSB/A and equals

SSB/A

X

j

X

k

n�̂2
k/j

which can be shown to equal to be equivalent to

SSB/A =
aX

j=1

SSB w Aj
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Example of nested sampling strategy

• experimenter estimates calcium concentration from turnip leaves 

• randomly selects 4 turnip plants 

- within each plant, randomly samples 3 leaves 

‣ within each leaf, randomly samples 3 locations 

➡ measures calcium in each location 

• final measure depends on variation among plants 

- variation among leaves within plant 

‣ variation among locations within leaves

Evaluating effects of A & B
Bennett, PJ PSY710 Chapter 10

Table 5: Expected mean squares for nested designs (B nested within A).

⇠(MS) ⇠(MS) df
Source A fixed; B random A & B random

A �2
e + n�2

� + bn
Pa

j=1 ↵j/(a� 1) �2
e + n�2

� + bn�2
↵ a� 1

B/A �2
e + n�2

� �2
e + n�2

�

Pa
j=1(b� 1) = a(b� 1)

Residuals �2
e �2

e ab(n� 1)

Hence, the sum of squares for the nested factor is obtained by pooling the sums of squares of the simple e↵ect
of B at each level of A.

The expected mean squares and degrees of freedom for mixed and random-e↵ects nested designs are shown
in Table 5. Note that the degrees of freedom for the nested factor is a(b � 1), where b equals the number of
levels of B in each level of A. The values of ⇠(MS ) make it clear that the main e↵ect of A should be evaluated
by comparing MSA to MSB/A, and the e↵ect of B/A is evaluated by comparing MSB/A to MSR. When B is
random, the null hypothesis is that �2

� = 0.

10.4.1 variance components

When A is fixed and B is random, the variance of our dependent variable will have two components, �2
✏ and

�2
� . The ANOVA estimate of �2

✏ is given by the Mean Square Within-cell (or Mean Square Residuals). The

ANOVA estimate of �2
� is

�2
� =

MSB/A �MSR

n
(20)

where MSR is the Mean-Square Residuals and n is the number of observations per cell (which is assumed to
be constant). Note that this definition di↵ers from the one given in Table 10.10 in your book. Equation 20 is
correct; the formula in Table 10.10 has a typographical error.

When A and B are both random, the variance of our dependent variable will have three components, �2
✏ ,

�2
� , and �2

↵. The ANOVA estimates of �✏ and �� are given by the Mean Square Within-cell and Equation 20,

respectively. The ANOVA estimate of �2
↵ is

�2
↵ =

MSA �MSB/A

bn
(21)

where MSB/A is the Mean-Square for B nested within A, b is the number of levels of B within each level of A,
and n is the number of observations per cell.

10.4.2 homogeneity of variance assumption

The assumptions underlying our analysis of a nested design are similar to those used in previous models. The
errors are assumed to be distributed normally with constant variance. When A or B is random, then the e↵ects
are assumed to be distributed normally with variances �2

↵ and �2
� , and the random factors are assumed to be

independent of each other and ✏. There is, however, one additional assumption that we make when we analyze
a nested design: Specifically, we must assume that the �k/j terms have the same variability at each level
of factor A. In other words, �2

� does not depend on, or interact with, A. Note that we have to make this
assumption because there is no obvious way to evaluate the A⇥B interaction in this design.

10.4.3 R examples

The first example uses data shown in Table 9 of your textbook (page 500). The data come from a fictitious
that examined the e↵ect of gender on the severity ratings that clinical psychology graduate students assigned to
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FA =
MSA

MSB/A
FB/A =

MSB/A

MSResiduals

b is the number of levels 
of B in each level of A



Variance components 
B nested within A

̂σ2
β =

MSB/A − MSResiduals

n

n : observations per cell 
b : number of levels of B within each level of A

̂σ2
α =

MSA − MSB/A

bn

Example: turnips

> turnips
   plant leaf spot calcium
1     p1   L1   s1    3.28
2     p1   L1   s2    3.09
3     p1   L2   s3    3.52
4     p1   L2   s4    3.48
5     p1   L3   s5    2.88
6     p1   L3   s6    2.80
7     p2   L4   s7    2.46
8     p2   L4   s8    2.44
9     p2   L5   s9    1.87
10    p2   L5  s10    1.92
11    p2   L6  s11    2.19
12    p2   L6  s12    2.19
13    p3   L7  s13    2.77
14    p3   L7  s14    2.66
15    p3   L8  s15    3.74
16    p3   L8  s16    3.44
17    p3   L9  s17    2.55
18    p3   L9  s18    2.55
19    p4  L10  s19    3.78
20    p4  L10  s20    3.87
21    p4  L11  s21    4.07
22    p4  L11  s22    4.12
23    p4  L12  s23    3.31
24    p4  L12  s24    3.31

• Each plant, each leaf, and each spot is 
given a unique identifier 

• Necessary if you want lmer to figure out 
that leaf is NESTED in plant and spot is 
NESTED in leaf

Example: turnips 
using aov()

> summary(aov(calcium~plant+leaf,data=turnips) )
            Df Sum Sq Mean Sq F value  Pr(>F)    
plant        3   7.56   2.520   378.7 3.8e-12 ***
leaf         8   2.63   0.329    49.4 5.1e-08 ***
Residuals   12   0.08   0.007                    

> (F.plant <- 2.5201/.3288) # denominator from leaf
[1] 7.665
> (p.plant <- 1-pf(F.plant,3,8) )
[1] 0.009727

FA =
MSA

MSB/A
FB/A =

MSB/A

MSResiduals



Example: turnips 
using aov()

> n <- 2
> a <- 4
> b <- 3

> # variance components (anova estimates):
> var.comp.error <- .0067
> ( var.comp.leaf <- (.3288-.0067) / n )
[1] 0.161
> ( var.comp.plant <- (2.5201 - .3288) / (b*n) )
[1] 0.3652

> # partial ICC:
> (part.icc.leaf <- var.comp.leaf / (var.comp.leaf + var.comp.error) )
[1] 0.9601
> (part.icc.plant <- var.comp.plant / (var.comp.plant + var.comp.error) )
[1] 0.982

> library(lmerTest)
> turnip.lme.01 <- lmer(calcium ~ 1 + (1|plant) + (1|leaf),data=turnips)
> anova(turnip.lme.01) # nothing here; no fixed effects
Type III Analysis of Variance Table with Satterthwaite's method
     Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

> ranova(turnip.lme.01) # chi-square tests on random effects
ANOVA-like table for random-effects: Single term deletions

Model:
calcium ~ (1 | plant) + (1 | leaf)
            npar logLik  AIC   LRT Df Pr(>Chisq)    
<none>         4  -1.09 10.2                        
(1 | plant)    3  -3.73 13.5  5.29  1      0.022 *  
(1 | leaf)     3 -15.62 37.2 29.07  1      7e-08 ***

Example: turnips 
analysis with lmer

Example: turnips 
variance components & association strength

Variance Components

variation within a leaf is VERY small 
compared to variation across leaves & plants

ICC (not partial-ICC)

Intraclass Correlation

̂ρ2
plant =

̂σ2
plant

̂σ2
plant + ̂σ2

leaf + ̂σ2
error


