

Experimental Design: Blocking

- A study is conducted to measure effect of drug on locomotor activity in hyperactive children
- Between-subjects design:
- 3 groups differ in drug dosage: zero, low, & high
- Dependent variable: locomotor activity
- measured for fixed interval after drug administration
- Before study, measure baseline locomotor activity in each subject
- baseline measure used as a **blocking variable**

Randomized Block Design

4 blocks of 12 Ss created using baseline locomotor activity activity measure
 subjects in each block assigned randomly to drug dose condition

		Drug Dose		
		zero	low	high
Block (Baseline Locomotor Activity)	low	4	4	4
	medium	4	4	4
	high	4	4	4
	very high	4	4	4

Do blocks differ from each other?

> with(theData, tapply(activity, block,mean));

```
low med high very
5.153699 8.007714 10.287328 13.818771
```

```
> summary(aov(activity ~ block, data=theData) );
```

```
Df Sum Sq Mean Sq F value Pr(>F)
block 3 483.1 161.02 106.3 <2e-16 ***
Residuals 44 66.6 1.51
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Effect of blocking factor on SSresiduals	Analysis of Covariance (ANCOVA)
<pre>> aov.1<-aov(y~drug,data=theData) > aov.2<-aov(y~block+drug+block:drug,data=theData) > summary(aov.1) Df Sum Sq Mean Sq F value Pr(>F) drug 2 37.1 18.539 2.173 0.126 Residuals 45 384.0 8.532 SStotal = 421 > summary(aov.2) Df Sum Sq Mean Sq F value Pr(>F) block 3 129.84 43.28 6.964 0.000818 *** drug 2 37.08 18.54 2.983 0.063294 . block:drug 6 30.37 5.06 0.815 0.565798 Residuals 36 223.75 6.22 SStotal = 421</pre>	 blocking allows variation in dependent variable (Y) that is associated with blocking variable to be removed from residuals in hyperactivity example, Y was linearly related to baseline activity but blocking variable was a qualitative factor did not fully take advantage of quantitative relation between Y and baseline locomotor activity ANCOVA quantitatively models association between dependent variable and <u>covariate</u> (baseline activity) using each subject's activity measure rather than dividing subjects into 4 factor groups

ANCOVA		Order of terms <u>does</u> matter but in this case we probably should put covariate first (why?)
<pre>> lm.1<-lm(y⁻activity+drug,data=theData) > lm.2<-lm(y⁻activity,data=theData) > anova(lm.2,lm.1) Analysis of Variance Table Model 1: y ⁻ activity Model 2: y ⁻ activity + drug Res.Df RSS Df Sum of Sq F Pr(>F) 1 46 278 92</pre>	Difference between models shows SS _{drug} <u>after</u> controlling for the linear association between Y and baseline activity	<pre>> lm.1<-lm(y-activity+drug,data=theData) > anova(lm.1) Analysis of Variance Table Df Sum Sq Mean Sq F value Pr(>F) activity 1 142.116 142.116 26.0939 6.739e-06 *** drug 2 39.286 19.643 3.6066 0.03544 * Residuals 44 239.638 5.446 > library(car) > Anova(lm.1,type=2) Anova(lm.1,type=2) Anova Table (Type II tests) Sum Sq DF F value Pr(>F) activity 1 44.324 1 26.4993 5.91e-06 *** drug 39.286 2 3.6066 0.03544 * Residuals 239.638 44</pre>
2 44 239.64 2 39.286 3.6066 0.03544 *		<pre>> lm.1b<-lm(y~drug+activity,data=theData) > anova(lm.1b) > Anova(lm.1b,type=2)</pre>
<pre>> anova(Im.1) Analysis of Variance Table</pre>	Same result obtained with sequential sums- of-squares ANOVA table for full model	Analysis of Variance Table Anova Table (Type II tests)
Response: y Df Sum Sq Mean Sq F value Pr(>F) activity 1 142.116 142.116 26.0939 6.739e-06 *** drug 2 39.286 19.643 3.6066 0.03544 * Residuals 44 239.638 5.446		Df Sum Sq Mean Sq F value Pr(>F) Sum Sq Df value Pr(>F) drug 2 37.078 18.539 3.4039 0.04222 * drug 39.286 2 3.6066 0.03544 * activity 1 144.324 144.324 26.4993 5.91e-06 *** Residuals 239.638 44

Computing Adjusted Means	$\bar{Y}_i' = \mu + \beta \bar{X} + \alpha_i$
> lm.1<-lm(y [~] activity+drug,data=theData)	covariate mean = 9.3168, so
<pre>> dummy.coef(lm.1);</pre>	adjusted group means are:
Full coefficients are	> 1.28519 + 0.5124*9.3168-0.8216
(Intercept): 1.28519 activity: 0.5124572	[1] 5.237518 zero
drug: zero low high	> 1.28519 + 0.5124*9.3168-0.4386
-0.8216185 -0.4386966 1.2603150	[1] 5.620518 low
dummy coefficients list the parameters for the lines fit to each group	> 1.28519 + 0.5124*9.3168+1.2603
> library(effects)	[1] 7.319418 high
> effect(term="drug",lm.1)	
June official	> emmeans(lm.1,specs=~drug)
arak errece	drug emmean SE df lower.CL upper.CL
drug	zero 5.24 0.583 44 4.06 6.41
zero low high	low 5.62 0.583 44 4.45 6.80
E 038070 E 600004 7 300006	high 7.32 0.583 44 6.14 8.50

5.238072 5.620994 7.320006

Homogeneity of slopes assumption	n
 ANCOVA assumes that slope of regression line is the same in each group implies that there is no covariate x group interaction if valid, then group differences are independent of covariate if not valid, then group differences vary with covariate 	<pre>> anova(lm.4) Analysis of Variance Table Response: y</pre>
> lm.4 <- lm(y~activity.c + d	rug + activity.c:drug,data=theData)

