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Between-Subjects Factorial Designs 
Higher-Order Interactions & Unbalanced Designs

Prof. Patrick Bennett

ANOVA example

3 x 3 factorial ANOVA

omnibus F tests

aov, aov_car, aov_ez

> options(contrasts=c("contr.sum","contr.poly"))
> load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/2-way-data.rda") )
> sapply(df0,class)
  subject     group      task         Y 
 "factor"  "factor"  "factor" "numeric" 
> xtabs(~group+task,df0)
     task
group t1 t2 t3
   g1 10 10 10
   g2 10 10 10
   g3 10 10 10

3 factors & 1 numeric variable

balanced factorial design



> summary(df0)
       subject   group   task          Y         
 s1     : 1   g1:30   t1:30   Min.   : 29.59  
 s2     : 1   g2:30   t2:30   1st Qu.: 80.68  
 s3     : 1   g3:30   t3:30   Median : 99.73  
 s4     : 1                   Mean   : 98.67  
 s5     : 1                   3rd Qu.:120.73  
 s6     : 1                   Max.   :164.22  
 (Other):84                                   

subject IDs 2 factors with 
3 levels

> aov.01 <- aov(Y~group*task,df0)
> summary(aov.01)
             Df Sum Sq Mean Sq F value   Pr(>F)    
group        2  14689    7345  14.978 2.92e-06 ***
task         2   1666     833   1.698   0.1895    
group:task   4   9179    2295   4.680   0.0019 ** 
Residuals   81  39719     490                     

significant main effect of group & group:task interaction

check normality

> shapiro.test(residuals(aov.01)) # normality

Shapiro-Wilk normality test
data:  residuals(aov.01)
W = 0.9893, p-value = 0.6794

> qqnorm(residuals(aov.01))
> qqline(residuals(aov.01))

check constant-variance assumption

> df0$condition <- interaction(df0$group,df0$task)

> class(df0$condition)
[1] “factor"

> levels(df0$condition)
[1] "g1.t1" "g2.t1" “g3.t1”…
> bartlett.test(Y~condition,df0) # constant variance

Bartlett test of homogeneity of variances
data:  Y by condition
Bartlett's K-squared = 5.0176, df = 8, p-value = 0.7557



alternatives to lm & aov 
aov_car

> library(afex)
> car.01 <- aov_car(Y~group*task+Error(subject),data=df0)
> summary(car.01) # this lists anova table
Anova Table (Type 3 tests)

Response: Y
           num Df den Df    MSE       F      ges    Pr(>F)    
group           2     81 490.36 14.9781 0.269982 2.917e-06 ***
task            2     81 490.36  1.6983 0.040245  0.189452    
group:task      4     81 490.36  4.6799 0.187724  0.001895 ** 

> # anova(car.01) # same as summary()
> # nice(car.01,es="pes") # anova table with partial-eta-squared (pes)
> # nice(car.01,es="ges") # anova table with generalized-eta-squared (ges)

alternative to lm & aov 
aov_ez

> library(afex)
> ez.01 <- aov_ez(id="subject",dv="Y",between=c("group","task"),data=df0)
> summary(ez.01)
Anova Table (Type 3 tests)

Response: Y
           num Df den Df    MSE       F      ges    Pr(>F)    
group           2     81 490.36 14.9781 0.269982 2.917e-06 ***
task            2     81 490.36  1.6983 0.040245  0.189452    
group:task      4     81 490.36  4.6799 0.187724  0.001895 ** 

decompose a main effect

(usually not wise to do this when interaction is significant)

decompose main effect of group
> aov.01 <- aov(Y~group*task,df0)
> summary(aov.01)
            Df Sum Sq Mean Sq F value   Pr(>F)    
group        2  14689    7345  14.978 2.92e-06
task         2   1666     833   1.698   0.1895    
group:task   4   9179    2295   4.680   0.0019 
Residuals   81  39719     490                    
> boxplot(Y~group,df0,
+         main="Main Effect (group)”)



decompose main effect of group 
Tukey HSD

> TukeyHSD(aov.01,which="group")
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = Y ~ group*task,data = df0)

$group
        diff   lwr     upr    p adj
g2-g1 -21.175 -34.82  -7.524 0.0011
g3-g1 -30.541 -44.19 -16.890 0.0000
g3-g2  -9.366 -23.01   4.284 0.2356

decompose main effect of group 
linear contrast

> levels(df0$group)
[1] "g1" "g2" “g3"
> myC <- c(1,-1/2,-1/2)
> library(emmeans)
> aov.emm <- emmeans(aov.01,specs="group")
NOTE: Results may be misleading due to involvement in interactions

> cres <- contrast(aov.emm,
+           method=list(T1vsT2_T3=myC))

> summary(cres,adjust="scheffe",scheffe.rank=2)
 contrast  estimate   SE df   t      p.value
 T1vsT2_T3     25.9 4.95 81   5.22   <.0001
Results are averaged over the levels of: task 
P value adjustment: scheffe method with rank 2 

decompose an interaction

simple main effects

simple main effects 
simple main effect of task at g1

> with(df0, interaction.plot(task,
+           group,
+           Y,
+           type="b",
+           fixed=TRUE,
+           pch=c(0,17,1)))> MS.resid <- 490 # from original ANOVA

> df.resid <- 81 # from original ANOVA
> aov.task.g1 <- aov(Y~task,
+             data=subset(df0,group=="g1"))

> summary(aov.task.g1)
            Df Sum Sq Mean Sq F value  Pr(>F)   
task         2   4877    2438   8.075 0.00178
Residuals   27   8153     302                   

> (F.task <- 2438/MS.resid)
[1] 4.97551
> (p.task <- 1-pf(F.task,2,df.resid))
[1] 0.009160864



analyze sub-effect in a simple main effect 
decompose task-in-g1 with 2 contrasts

> levels(df0$task)
[1] "t1" "t2" "t3"
> T3vsT1T2 <- c(1/2,1/2,-1)
> T1vsT2 <- c(-1,1,0)
> # sum(T3vsT1T2*T1vsT2) # orthogonal
> contrasts(df0$task) <- cbind(T3vsT1T2,T1vsT2)

analyze sub-effect in simple main effect 
decompose task-in-g1 simple main effect with 2 contrasts

> aov.task.g1.02 <- aov(Y~task,data=subset(df0,group=="g1"))
> summary(aov.task.g1.02,

  split=list(task=list(T3vsT1T2=1,T1vsT2=2)))
                 Df   SS      MS     F      Pr(>F)    
task              2   4877    2439   8.075  0.002 
  task: T3vsT1T2  1   4876    4876  16.148 <0.001
  task: T1vsT2    1      1       1   0.002  0.964 
Residuals        27   8153     302 
                    
> ( F.T3vsT1T2 <- 4876/MS.resid )
[1] 9.951
> ( p.T3vsT1T2 <- 1-pf(F.T3vsT1T2,1,df.resid) )
[1] 0.002

simple main effects 
simple main effect of task at g2

> MS.resid <- 490 # from original ANOVA
> df.resid <- 81 # from original ANOVA
> aov.task.g2 <- aov(Y~task,
+             data=subset(df0,group=="g2"))
> summary(aov.task.g2)
            Df Sum Sq Mean Sq F value Pr(>F)
task         2   2991  1495.7   2.301  0.119
Residuals   27  17552   650.1 
              
> (F.task <- 1495.7/MS.resid)
[1] 3.0524
> (p.task <- 1-pf(F.task,2,df.resid))
[1] 0.0527

simple main effects 
simple main effect of task at g3

> MS.resid <- 490 # from original ANOVA
> df.resid <- 81 # from original ANOVA
> aov.task.g3 <- aov(Y~task,
+             data=subset(df0,group=="g3"))
> summary(aov.task.g3)
            Df   SS      MS     F     Pr(>F)  
task         2   2976    1488   2.867 0.0743
Residuals   27  14014     519     
              
> (F.task <- 1488/MS.resid)
[1] 3.036
> (p.task <- 1-pf(F.task,2,df.resid))
[1] 0.053



using emmeans

simple main effects 
using joint_tests in emmeans

> library(emmeans)
> # note formula
> aov.01.emm <- emmeans(aov.01,specs=~task|group)
> joint_tests(aov.01.emm,by="group")
group = g1:
 model term df1 df2 F.ratio p.value
 task         2  81   4.973  0.0092
group = g2:
 model term df1 df2 F.ratio p.value
 task         2  81   3.050  0.0528
group = g3:
 model term df1 df2 F.ratio p.value
 task         2  81   3.035  0.0536

N.B. joint_tests uses error term from overall ANOVA

pairwise tests within each level 
using pairs in emmeans
> aov.01.emm <- emmeans(aov.01,specs=~task|group) 
> pairs(aov.01.emm) # tukey adjustment by default
group = g1:
 contrast estimate  SE df t.ratio p.value
 t1 - t2     0.356 9.9 81   0.036  0.9993
 t1 - t3    27.224 9.9 81   2.749  0.0199
 t2 - t3    26.868 9.9 81   2.713  0.0220
group = g2:
 contrast estimate  SE df t.ratio p.value
 t1 - t2     8.489 9.9 81   0.857  0.6687
 t1 - t3    24.111 9.9 81   2.435  0.0446
 t2 - t3    15.622 9.9 81   1.577  0.2612
group = g3:
 contrast estimate  SE df t.ratio p.value
 t1 - t2    -9.288 9.9 81  -0.938  0.6180
 t1 - t3   -24.182 9.9 81  -2.442  0.0438
 t2 - t3   -14.894 9.9 81  -1.504  0.2944
P value adjustment: tukey method for comparing a family of 3 estimates 

decompose an interaction

interaction contrasts



interaction contrast 
does task-contrast differ across groups?

> # interaction contrast
> levels(df0$task)
[1] "t1" "t2" “t3"
> T3vsT1T2 <- c(1/2,1/2,-1)
> T1vsT2 <- c(-1,1,0)

> levels(df0$group)
[1] "g1" "g2" "g3"
> G3vsG1G2 <- c(1/2,1/2,-1)
> G1vsG2 <- c(1,-1,0)
 
> contrasts(df0$task) <- cbind(T3vsT1T2,T1vsT2)
> contrasts(df0$group) <- cbind(G3vsG1G2,G1vsG2)

interaction contrast 
does task contrast differ across groups?
> aov.10 <- aov(Y~group*task,data=df0)
> summary(aov.10,
+         split=list(task=list(T3vsT1T2=1,T1vsT2=2),
+                    group=list(G3vsG1G2=1,G1vsG2=2)))
                                Df  SS       MS    F     Pr(>F)    
group                            2  14689    7345  14.98 <.001
  group: G3vsG1G2                1   7964    7964  16.24 <.001
  group: G1vsG2                  1   6726    6726  13.72 <.001
task                             2   1666     833   1.69 0.189    
  task: T3vsT1T2                 1   1665    1665   3.39 0.069  
  task: T1vsT2                   1      0       0   0.00 0.979    
group:task                       4   9179    2295   4.68 0.001 
  group:task: G3vsG1G2.T3vsT1T2  1   8216    8216  16.75 <.001
  group:task: G1vsG2.T3vsT1T2    1    172     172   0.35 0.555    
  group:task: G3vsG1G2.T1vsT2    1    627     627   1.28 0.261    
  group:task: G1vsG2.T1vsT2      1    165     165   0.34 0.563    
Residuals                       81  39719     490                     

interaction contrast 
does task contrast differ across groups?
> aov.10 <- aov(Y~group*task,data=df0)
> summary(aov.10,
+         split=list(task=list(T3vsT1T2=1,T1vsT2=2),
+                    group=list(G3vsG1G2=1,G1vsG2=2)))
                                Df  SS       MS    F     Pr(>F)    
group                            2  14689    7345  14.98 <.001
  group: G3vsG1G2                1   7964    7964  16.24 <.001
  group: G1vsG2                  1   6726    6726  13.72 <.001
task                             2   1666     833   1.69 0.189    
  task: T3vsT1T2                 1   1665    1665   3.39 0.069  
  task: T1vsT2                   1      0       0   0.00 0.979    
group:task                       4   9179    2295   4.68 0.001 
  group:task: G3vsG1G2.T3vsT1T2  1   8216    8216  16.75 <.001
  group:task: G1vsG2.T3vsT1T2    1    172     172   0.35 0.555    
  group:task: G3vsG1G2.T1vsT2    1    627     627   1.28 0.261    
  group:task: G1vsG2.T1vsT2      1    165     165   0.34 0.563    
Residuals                       81  39719     490                     

interaction contrast 
does task contrast differ across groups?
> aov.10 <- aov(Y~group*task,data=df0)
> summary(aov.10,
+         split=list(task=list(T3vsT1T2=1,T1vsT2=2),
+                    group=list(G3vsG1G2=1,G1vsG2=2)))
                                Df  SS       MS    F     Pr(>F)    
group                            2  14689    7345  14.98 <.001
  group: G3vsG1G2                1   7964    7964  16.24 <.001
  group: G1vsG2                  1   6726    6726  13.72 <.001
task                             2   1666     833   1.69 0.189    
  task: T3vsT1T2                 1   1665    1665   3.39 0.069  
  task: T1vsT2                   1      0       0   0.00 0.979    
group:task                       4   9179    2295   4.68 0.001 
  group:task: G3vsG1G2.T3vsT1T2  1   8216    8216  16.75 <.001
  group:task: G1vsG2.T3vsT1T2    1    172     172   0.35 0.555    
  group:task: G3vsG1G2.T1vsT2    1    627     627   1.28 0.261    
  group:task: G1vsG2.T1vsT2      1    165     165   0.34 0.563    
Residuals                       81  39719     490                     



interaction contrast 
does task contrast differ across groups?
  
group:task                       4   9179    2295   4.68 0.001 
  group:task: G3vsG1G2.T3vsT1T2  1   8216    8216  16.75 <.001
  group:task: G1vsG2.T3vsT1T2    1    172     172   0.35 0.555    
Residuals                       81  39719     490                     

• T3vsT1T2 compares Task 3 to average of Tasks 1 & 2 
- compute value of this contrast (PSI) for each group 

• 1st interaction contrast compares value of T3vsT1T2 in Group 3 to the 
average of the values in Groups 1 & 2: it is significant 

• 2nd interaction contrast compares the value of the T3vsT1T2 contrast in 
Group 1 to the value in Group 2: it is NOT significant

interaction contrast 
contrast (psi) = weighted sum of cell means

Task
1/2 1/2 -1

g1 1/2 1/4 1/4 -1/2
g2 1/2 1/4 1/4 -1/2
g3 -1 -1/2 -1/2 1

contrast weights Task
1/2 1/2 -1

g1 1/2 125.1 124.7 97.9
g2 1/2 105.6 97.1 81.5
g3 -1 74.2 83.5 93.4

cell means

> n <- 10
> ( SS.contrast <- n*(psi^2) / (sum(t.x.g^2)) )
[1] 8216
> ( F.contrast <- SS.contrast/MS.resid )
[1] 16.76
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1
4
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interaction contrast 
does task contrast differ across groups?
> aov.10 <- aov(Y~group*task,data=df0)
> summary(aov.10,
+         split=list(task=list(T3vsT1T2=1,T1vsT2=2),
+                    group=list(G3vsG1G2=1,G1vsG2=2)))
                                Df  SS       MS    F     Pr(>F)    
group                            2  14689    7345  14.98 <.001
  group: G3vsG1G2                1   7964    7964  16.24 <.001
  group: G1vsG2                  1   6726    6726  13.72 <.001
task                             2   1666     833   1.69 0.189    
  task: T3vsT1T2                 1   1665    1665   3.39 0.069  
  task: T1vsT2                   1      0       0   0.00 0.979    
group:task                       4   9179    2295   4.68 0.001 
  group:task: G3vsG1G2.T3vsT1T2  1   8216    8216  16.75 <.001
  group:task: G1vsG2.T3vsT1T2    1    172     172   0.35 0.555    
  group:task: G3vsG1G2.T1vsT2    1    627     627   1.28 0.261    
  group:task: G1vsG2.T1vsT2      1    165     165   0.34 0.563    
Residuals                       81  39719     490                     

3-way ANOVAs

analyzing 2- and 3-way interactions in three-way factorial designs



2-way interactions

A x B interaction in an A x B x C factorial design

2 x 2 x 2 ANOVA example
> load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/aov-3way-data.rda") )
> aov.01 <- aov(score~A*B*C,data=myDf09)
> anova(aov.01)

Analysis of Variance Table
Response: score
           Df   SS     MS      F    Pr(>F)    
A           1   9.395  9.395  9.329 0.0028 
B           1   4.935  4.935  4.900 0.0288  
C           1   0.261  0.261  0.259 0.6115    
A:B         1  14.578 14.578 14.475 0.0002
A:C         1   0.014  0.014  0.014 0.9053    
B:C         1   0.733  0.733  0.728 0.3953    
A:B:C       1   0.000  0.000  0.000 0.9877    
Residuals 112 112.79   1.007 

> with(myDf,interaction.plot(x.factor=A,
+      trace.factor=B,
+      response=score,
+      type=“b”,
+      ylab=“score",
+      pch=c(19,21)))
> mtext(side=3,
+       text="AxB interaction (ignoring C)”,
+       line=0.5,
+       cex=1.25)      

2 x 2 x 2 ANOVA example 
simple effects of A at B0 (ignoring C)

> # simple main effect of A at B0 (ignoring C)
> curDf <- subset(myDf,B=="b0")
> a.b0 <- aov(score~A,data=curDf)
> summary(a.b0)
            Df   SS    MS       F     Pr(>F)
A            1   0.28  0.283   0.258  0.61
Residuals   58  63.61  1.097

N.B. We could recalculate F & p values using 
MS-resid and df-resid from full model

A is the simple main effect at B0

2 x 2 x 2 ANOVA example 
simple effects of A at B1 (ignoring C)

> # simple main effect of A at B1 (ignoring C)
> curDf <- subset(myDf,B=="b1")
> a.b1 <- aov(score~A,data=curDf)
> summary(a.b1)
            Df  SS     MS       F     Pr(>F)    
A            1  23.69  23.690   27.38 <.001
Residuals   58  50.19   0.865                     

N.B. We could recalculate F & p values using 
MS-resid and df-resid from full model

A is the simple main effect at B1



Analyzing a 3-way interaction

decomposing a 3-way interaction
> load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/aov-3way-data.rda") )
> myDf10 <- data.frame(score,A,B,C,groupID)
> aov.100 <- aov(score~A*B*C,data=myDf10)
> anova(aov.100)
Analysis of Variance Table
Response: score
           Df  SS      MS     F      Pr(>F)    
A           1  326.32  326.32 12.961 <.001
B           1    8.36    8.36  0.332 0.565    
C           1  488.06  488.06 19.385 <.001
A:B         1  118.26  118.26  4.697 0.032  
A:C         1  171.49  171.49  6.811 0.010  
B:C         1   88.57   88.57  3.518 0.063  
A:B:C       1  185.38  185.38  7.363 0.008 
Residuals 112 2819.84   25.18 

A x B interaction at C1 A x B interaction at C2

decomposing a 3-way interaction 
evaluate simple AxB interaction at C1

> # simple AxB interaction at c1:
> aov.101.c1 <- aov(score~A*B,data=subset(myDf10,C=="c1"))
> anova(aov.101.c1)
Analysis of Variance Table
Response: score
          Df  SS      MS     F       Pr(>F)    
A          1  485.46  485.46 17.3717 0.0001
B          1   75.68   75.68  2.7083 0.1054    
A:B        1    3.76    3.76  0.1344 0.7152    
Residuals 56 1564.95   27.95       
In this ANOVA table, A is the simple main effect of A at C1

N.B. We could recalculate F & p values using 
MS-resid and df-resid from full model

decomposing a 3-way interaction 
simple AxB interaction at C2

> # simple AxB interaction at c2:
> aov.101.c2 <- aov(score~A*B,data=subset(myDf10,C=="c2"))
> anova(aov.101.c2)
Analysis of Variance Table
Response: score
          Df   SS     MS     F    Pr(>F)    
A          1   12.35  12.35  0.551 0.461    
B          1   21.25  21.25  0.948 0.334    
A:B        1  299.89 299.89 13.382 <.001
Residuals 56 1254.89  22.41                      
A:B is the simple AxB interaction at C2

N.B. We could recalculate F & p values using 
MS-resid and df-resid from full model



decomposing a 3-way interaction 
analyze AxB interaction at C2: simple simple main effect of A at B1 & C2

> # evaluate simple simple main effect of A at B1 & C2:
> aov.101.c2.b1 <- aov(score~A,
+               data=subset(myDf10,B=="b1"&C=="c2"))
> anova(aov.101.c2.b1)
Analysis of Variance Table
Response: score
          Df  SS     MS     F   Pr(>F)  
A          1  95.27  95.3  3.69 0.065
Residuals 28 721.91  25.8           

N.B. We could recalculate F & p values using 
MS-resid and df-resid from full model

simple simple main effect of A at B1 & C2

decomposing a 3-way interaction 
analyze AxB interaction at C2: simple simple main effect of A at B2 & C2

> # evaluate simple simple main effect of A at B2 & C2:
> aov.101.c2.b2 <- aov(score~A,
+                  data=subset(myDf10,B=="b2"&C=="c2"))
> anova(aov.101.c2.b2)
Analysis of Variance Table
Response: score
          Df SS   MS   F     Pr(>F)   
A          1 217  217  11.39 0.002
Residuals 28 533   19                   

N.B. We could recalculate F & p values using 
MS-resid and df-resid from full model

simple simple main effect of A at B2 & C2

effect size

Measures of Association Strength

Bennett, PJ PSY710 Chapter 7

> dummy.coef(lm.04)

Full coefficients are

(Intercept): 10.46698

B: b1 b2

-0.9834858 0.9834858

B:A: b1:a1 b2:a1 b1:a2 b2:a2

-2.420677 -1.542622 2.420677 1.542622

The bottom line is that R intentionally makes it di�cult for you to construct and compare models
that violate the marginality principle.

7.8 measures of association strength & e↵ect size

We are considering a factorial experiment in which the factors are fixed (i.e., all of the factors about
which inferences are to be drawn are included in the experiment). In this case, the appropriate
(Kirk, 1995) measure of association strength is partial omega squared (!2

partial). !
2
partial expresses

the variance of each treatment e↵ect relative to the sum of the treatment e↵ect variance and error
variance. Note that “error” refers to the error calculated from the full model: it is the unexplained
variance. Hence, !2

A,partial expresses the variance among ↵’s relative to the sum of the error variance
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Usually it is easier to calculate !2
partial using the values listed in the ANOVA table for the full model.
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each partial omega-squared ignores variation 
in dependent variable that is due to other 
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!2
B,partial =

dfB(FB � 1)

dfB(FB � 1) +N

!2
AB,partial =

dfAB(FAB � 1)

dfAB(FAB � 1) +N

If !2
partial < 0, then it is set to 0.

For the data shown in Table 1, calculating !2
partial from F ’s yields

> (omega.a <- (1 * (84.59 - 1))/(1 * (84.59 - 1) + 24))

[1] 0.7769309

> (omega.b <- (1 * (20.83 - 1))/(1 * (20.83 - 1) + 24))

[1] 0.4524298

> (omega.ab <- (1 * (4.15 - 1))/(1 * (4.15 - 1) + 24))

[1] 0.1160221

According to Cohen’s 1988 guidelines,

!2
partial = 0.010 is a small association

!2
partial = 0.059 is a medium association

!2
partial � 0.138 is a large association

Partial omega squared can be used to calculate Cohen’s measure of e↵ect size, f

ftreatment =

s
!2
partial

1� !2
partial

According to Cohen, f ’s of 0.1, 0.25, and 0.4 represent small, medium, and large e↵ect sizes, respec-
tively.

7.9 power

Your textbook describes how to calculate statistical power from estimates of the e↵ects in your linear
model (see pages 317-319). Here I want to show you how to calculate power using the pwr package
for R. If you have not yet installed the package on your computer, do so now using the following
command:

> install.packages("pwr")
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Cohen 1988:

Measures of Association Strength
• partial eta-squared (pes) 

- similar to partial omega squared 

- slightly biased estimate of population value 

• generalized eta-squared (ges) 

- Olegnik & Algina (2003) Psychological Methods, 8(4): 434-447  

- analogous to partial omega squared  

- distinguishes between manipulated & observed variables 

‣ partial omega squared ignores variation in DV due to all other effects in model 

‣ ges does not remove variation due to observed variables (e.g., age, gender, etc.) 

- ges may be more invariant across different experimental designs

η2
A,partial =

SSA

SSResiduals + SSA

Measures of Effect Size
Cohen’s f

Cohen 1988: 

0.01 = small effect 
0.25 = medium effect 
0.40 = large effect
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Cohen’s f is a generalization of Cohen’s d, and for balanced designs is approximately equal 
to the mean standardized difference between group/marginal means and the grand mean

N.B. cohens_f in effectsize package uses partial eta-squared

Association Strength & Effect Size (effectsize)
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After installing the package, you must load it into memory with the command library(pwr)

command. Note that you only need to use this command once per R session. Now we can use
pwr.f2.test to calculate the power for any F test. Suppose we have a two-factor design: factors A
and B have three and two levels, respectively. Also, let’s assume that the e↵ect sizes for the main
e↵ects of A and B are 0.1 (i.e., small) and 0.25 (i.e., medium), respectively. Finally, we assume
that we have six subjects per group, and therefore that the degrees of freedom for MSresiduals in our
ANOVA will be 3⇥ 2⇥ (6� 1) = 30. The following commands calculates the power of the test for a
main e↵ect of A when ↵ = .05:

> library(pwr)

> pwr.f2.test(u=3-1,v=30,f2=(0.1^2),sig.level=.05)

Multiple regression power calculation

u = 2

v = 30

f2 = 0.01

sig.level = 0.05

power = 0.07319046

And here is the power of the test for a main e↵ect of B:

> pwr.f2.test(u=2-1,v=30,f2=(0.25^2),sig.level=.05)

Multiple regression power calculation

u = 1

v = 30

f2 = 0.0625

sig.level = 0.05

power = 0.2777445

Note that u and v correspond to the degrees of freedom in the numerator and denominator, respec-
tively, and f2 is e↵ect size squared (i.e., Cohen’s f 2). The results of pwr.f2.test indicated that
power is quite low for the tests of both main e↵ects. pwr.f2.test also can be used to estimate the
number of subjects that we would need to attain a power that was at least 0.8:

> pwr.f2.test(u=3-1,f2=(0.1^2),sig.level=.05,power=.8)

Multiple regression power calculation

u = 2

v = 963.4709

f2 = 0.01

sig.level = 0.05

power = 0.8

> pwr.f2.test(u=2-1,f2=(0.25^2),sig.level=.05,power=.8)
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Cohen’s f2 

(N.B. f=.1 is a small effect)

df in numerator & 
denominator

Power for F test
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need df=963 in denominator for power=0.8

• total N = 963+1 = 964 
• if you using a (3x2) factorial design => 6 condition 
• 964/6 = 162 Ss per condition

Unbalanced Data

unequal N per cell
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Table 2: Data from drinking study.

no alcohol alcohol Row Means

Michigan

13 15 14
16 12
Ȳ11 =
14

18 20 22 19
21 23 17 18
22 20
Ȳ12 = 20

Ȳ1. = 18

Arizona
13 15 18 14
10 12 16 17
15 10 14
Ȳ21 = 14

24 25 17
16 18
Ȳ22 =
20

Ȳ2. = 15.9

Column Means Ȳ.1 = 14 Ȳ.2 = 20

The fact that the row, column and interaction e↵ects are no longer orthogonal greatly complicates
the analysis of variance. To see why, consider the following two linear models:

score ⇠ 1 + alcohol + state + alcohol : state (45)

score ⇠ 1 + state + alcohol + state : alcohol (46)

The ANOVA tables produced by R for Models 45 and 46 are presented in Table 3. Although the
models di↵er only in the order of terms, the sums of squares assigned by the models to the main
e↵ects di↵er significantly.

Df Sum Sq Mean Sq F value Pr(>F)
state 1 34.96 34.96 5.13 0.0318
alcohol 1 243.75 243.75 35.77 0.0000
state:alcohol 1 0.00 0.00 0.00 1.0000
Residuals 27 184.00 6.81

Df Sum Sq Mean Sq F value Pr(>F)
alcohol 1 278.71 278.71 40.90 0.0000
state 1 0.00 0.00 0.00 1.0000
alcohol:state 1 0.00 0.00 0.00 1.0000
Residuals 27 184.00 6.81

Table 3: ANOVA tables for Model 1 (top) and Model 2 (bottom).

7.12.2 Proportional Cell Frequencies

Before I continue to discuss the problems associated with analyzing unbalanced data, I want to
describe a case where unbalanced data are not hard to analyze. Suppose we had 36 subjects from
Michigan, with 24 in the alcohol condition and 12 in the no-alcohol condition. Also, let’s suppose
that there were 24 subjects from Arizona, with 16 in the alcohol condition and 8 in the no-alcohol
condition. In this case, the ratio of subjects in the alcohol and no-alcohol conditions is 2:1 at both

26

Sequential SS for unbalanced designs

• 2 models differ only in the order of terms 

• yet SS assigned to main effects differs 
between models 

• this order dependence is a sign that 
design is unbalanced 

• the main effects are not orthogonal
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Assigning portions of SStotal to A, B, and AxB

A B

AxB

ANOVA assigns variation in dependent variable to A, B, and AxB 
Balanced designs: A, B, & AxB account for separate components of SStotal

Assigning portions of SStotal to A, B, and AxB

A B

AxB

ANOVA assigns variation in dependent variable to A, B, and AxB 
Unbalanced designs: A, B, & AxB account for overlapping components of SStotal 

No unique way of partitioning SStotal

A & B

A & AxB B & AxBA, B & AxB



Rules of assigning Sums of Squares

• Type I (Sequential): SS calculated sequentially/hierarchically. 

- SS for an effect adjusted only for preceding terms in model 

• Type II: SS for an effect adjusted for all other terms that that do not 
include the effect in question 

• Type III: SS for an effect adjusted for all other terms in the model 

• For balanced designs: Type 1 = Type 2 = Type 3 

• For highest-order interaction: Type 1 = Type 2 = Type 3

Type I (Sequential) Sum of Squares

SS depends on the order of terms listed in the model

Type I Sums of Squares 
[order determined by model formula (R uses this rule)]
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score ⇠ 1 + alcohol + state + alcohol : state (45)

score ⇠ 1 + state + alcohol + state : alcohol (46)

The ANOVA tables produced by R for Models 45 and 46 are presented in Table 3. Although the
models di↵er only in the order of terms, the sums of squares assigned by the models to the main
e↵ects di↵er significantly.

Df Sum Sq Mean Sq F value Pr(>F)
state 1 34.96 34.96 5.13 0.0318
alcohol 1 243.75 243.75 35.77 0.0000
state:alcohol 1 0.00 0.00 0.00 1.0000
Residuals 27 184.00 6.81

Df Sum Sq Mean Sq F value Pr(>F)
alcohol 1 278.71 278.71 40.90 0.0000
state 1 0.00 0.00 0.00 1.0000
alcohol:state 1 0.00 0.00 0.00 1.0000
Residuals 27 184.00 6.81

Table 3: ANOVA tables for Model 1 (top) and Model 2 (bottom).

7.12.2 Proportional Cell Frequencies

Before I continue to discuss the problems associated with analyzing unbalanced data, I want to
describe a case where unbalanced data are not hard to analyze. Suppose we had 36 subjects from
Michigan, with 24 in the alcohol condition and 12 in the no-alcohol condition. Also, let’s suppose
that there were 24 subjects from Arizona, with 16 in the alcohol condition and 8 in the no-alcohol
condition. In this case, the ratio of subjects in the alcohol and no-alcohol conditions is 2:1 at both
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levels of the other variable, state. If the proportion of cases in one variable is the same at all levels
of the other variables, then the design exhibits proportionality and can be analyzed as though the
data were balanced. So everything in the following conditions applies to situations where the data
are unbalanced and cell sizes are not proportional.

7.12.3 Type I (Sequential) Sums of Squares

R prints so-called Type I, or sequential, sums of squares, which are computed by comparing a series
of nested models. The sums of squares in the top of Table 3 are derived by comparing the following
four nested models:

1.1) score ⇠ 1

1.2) score ⇠ 1 + state

1.3) score ⇠ 1 + state + alcohol

1.4) score ⇠ 1 + state + alcohol + state : alcohol

SSstate is derived by comparing models 1.1 and 1.2, SSalcohol is derived by comparing models 1.2 and
1.3, and SSstate:alcohol is derived by comparing models 1.3 and 1.4. In the first step of this sequential
comparison process, SSstate represents all of the variation in the dependent variable that is associated
with state. In the second step, SSalcohol represents the variation in the dependent variable that is
associated with alcohol after removing the variation assigned to state. The third step assigns all
of the variation in the dependent variable that is associated with the state X alcohol interaction
after removing variation assigned to the two main e↵ects.

The sums of squares in the bottom of Table 3 are derived by comparing the following four nested
models:

2.1) score ⇠ 1

2.2) score ⇠ 1 + alcohol

2.3) score ⇠ 1 + alcohol + state

2.4) score ⇠ 1 + alcohol + state + alcohol : state

SSalcohol is derived by comparing models 2.1 and 2.2, SSstate is derived by comparing models 2.2 and
2.3, and SSalcohol :score is derived by comparing models 2.3 and 2.4. In this case, SSalcohol represents
all of the variation in the dependent variable that is associated with alcohol, but SSstate represents
the variation that is associated with state after removing the variation assigned to alcohol. The
last step is the same as before: SSalcohol :state represents the variation in the dependent variable that
is associated with the state X alcohol interaction after removing the variation that assigned to the
two main e↵ects.

In Section 7.12, I noted that the fact that the design is unbalanced means that the main e↵ects of
state and alcohol are not orthogonal. The lack of orthogonality means that some of the variation
in the dependent variable that is associated with state is also associated with alcohol; and some of
the variation in the dependent variable that is associated with alcohol is also associated with state.
This state of a↵airs is often summarized by saying that state and alcohol account for “overlapping”
portions of the variation of the dependent variable. In such cases, the variation assigned to each
variable depends on the order in which the assignment takes place. When we compare models 1.2
and 1.1, some variation in the dependent variable is assigned to SSstate . However, our example was
constructed in such a way that the “e↵ect” of state actually was due entirely to the e↵ect of alcohol.
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the variation that is associated with state after removing the variation assigned to alcohol. The
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This state of a↵airs is often summarized by saying that state and alcohol account for “overlapping”
portions of the variation of the dependent variable. In such cases, the variation assigned to each
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Table 2: Data from drinking study.

no alcohol alcohol Row Means

Michigan

13 15 14
16 12
Ȳ11 =
14

18 20 22 19
21 23 17 18
22 20
Ȳ12 = 20

Ȳ1. = 18

Arizona
13 15 18 14
10 12 16 17
15 10 14
Ȳ21 = 14

24 25 17
16 18
Ȳ22 =
20

Ȳ2. = 15.9

Column Means Ȳ.1 = 14 Ȳ.2 = 20

The fact that the row, column and interaction e↵ects are no longer orthogonal greatly complicates
the analysis of variance. To see why, consider the following two linear models:

score ⇠ 1 + alcohol + state + alcohol : state (45)

score ⇠ 1 + state + alcohol + state : alcohol (46)

The ANOVA tables produced by R for Models 45 and 46 are presented in Table 3. Although the
models di↵er only in the order of terms, the sums of squares assigned by the models to the main
e↵ects di↵er significantly.

Df Sum Sq Mean Sq F value Pr(>F)
state 1 34.96 34.96 5.13 0.0318
alcohol 1 243.75 243.75 35.77 0.0000
state:alcohol 1 0.00 0.00 0.00 1.0000
Residuals 27 184.00 6.81

Df Sum Sq Mean Sq F value Pr(>F)
alcohol 1 278.71 278.71 40.90 0.0000
state 1 0.00 0.00 0.00 1.0000
alcohol:state 1 0.00 0.00 0.00 1.0000
Residuals 27 184.00 6.81

Table 3: ANOVA tables for Model 1 (top) and Model 2 (bottom).

7.12.2 Proportional Cell Frequencies

Before I continue to discuss the problems associated with analyzing unbalanced data, I want to
describe a case where unbalanced data are not hard to analyze. Suppose we had 36 subjects from
Michigan, with 24 in the alcohol condition and 12 in the no-alcohol condition. Also, let’s suppose
that there were 24 subjects from Arizona, with 16 in the alcohol condition and 8 in the no-alcohol
condition. In this case, the ratio of subjects in the alcohol and no-alcohol conditions is 2:1 at both
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levels of the other variable, state. If the proportion of cases in one variable is the same at all levels
of the other variables, then the design exhibits proportionality and can be analyzed as though the
data were balanced. So everything in the following conditions applies to situations where the data
are unbalanced and cell sizes are not proportional.

7.12.3 Type I (Sequential) Sums of Squares

R prints so-called Type I, or sequential, sums of squares, which are computed by comparing a series
of nested models. The sums of squares in the top of Table 3 are derived by comparing the following
four nested models:

1.1) score ⇠ 1

1.2) score ⇠ 1 + state

1.3) score ⇠ 1 + state + alcohol

1.4) score ⇠ 1 + state + alcohol + state : alcohol

SSstate is derived by comparing models 1.1 and 1.2, SSalcohol is derived by comparing models 1.2 and
1.3, and SSstate:alcohol is derived by comparing models 1.3 and 1.4. In the first step of this sequential
comparison process, SSstate represents all of the variation in the dependent variable that is associated
with state. In the second step, SSalcohol represents the variation in the dependent variable that is
associated with alcohol after removing the variation assigned to state. The third step assigns all
of the variation in the dependent variable that is associated with the state X alcohol interaction
after removing variation assigned to the two main e↵ects.

The sums of squares in the bottom of Table 3 are derived by comparing the following four nested
models:

2.1) score ⇠ 1

2.2) score ⇠ 1 + alcohol

2.3) score ⇠ 1 + alcohol + state

2.4) score ⇠ 1 + alcohol + state + alcohol : state

SSalcohol is derived by comparing models 2.1 and 2.2, SSstate is derived by comparing models 2.2 and
2.3, and SSalcohol :score is derived by comparing models 2.3 and 2.4. In this case, SSalcohol represents
all of the variation in the dependent variable that is associated with alcohol, but SSstate represents
the variation that is associated with state after removing the variation assigned to alcohol. The
last step is the same as before: SSalcohol :state represents the variation in the dependent variable that
is associated with the state X alcohol interaction after removing the variation that assigned to the
two main e↵ects.

In Section 7.12, I noted that the fact that the design is unbalanced means that the main e↵ects of
state and alcohol are not orthogonal. The lack of orthogonality means that some of the variation
in the dependent variable that is associated with state is also associated with alcohol; and some of
the variation in the dependent variable that is associated with alcohol is also associated with state.
This state of a↵airs is often summarized by saying that state and alcohol account for “overlapping”
portions of the variation of the dependent variable. In such cases, the variation assigned to each
variable depends on the order in which the assignment takes place. When we compare models 1.2
and 1.1, some variation in the dependent variable is assigned to SSstate . However, our example was
constructed in such a way that the “e↵ect” of state actually was due entirely to the e↵ect of alcohol.
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the variation that is associated with state after removing the variation assigned to alcohol. The
last step is the same as before: SSalcohol :state represents the variation in the dependent variable that
is associated with the state X alcohol interaction after removing the variation that assigned to the
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In Section 7.12, I noted that the fact that the design is unbalanced means that the main e↵ects of
state and alcohol are not orthogonal. The lack of orthogonality means that some of the variation
in the dependent variable that is associated with state is also associated with alcohol; and some of
the variation in the dependent variable that is associated with alcohol is also associated with state.
This state of a↵airs is often summarized by saying that state and alcohol account for “overlapping”
portions of the variation of the dependent variable. In such cases, the variation assigned to each
variable depends on the order in which the assignment takes place. When we compare models 1.2
and 1.1, some variation in the dependent variable is assigned to SSstate . However, our example was
constructed in such a way that the “e↵ect” of state actually was due entirely to the e↵ect of alcohol.
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So, after comparing models 2.2 and 2.1, and assigning alcohol-associated variation in the dependent
variable to SSalocohol , there is nothing left to assign to SSstate .

One last comment. This discussion should make it clear that each main e↵ect has two values for
Type I sum of squares: one is calculated by comparing models that ignore the other e↵ects (e.g.,
comparing models 1.1 and 1.2, or 2.1 and 2.2) and another that is calculated by comparing models
that control for the other main e↵ect (e.g., comparing 1.2 and 1.3, or 2.2 and 2.3). Both values are
Type I sums of squares, so you need to be clear which value you are referring to when you discuss the
“Type I sum of squares for factor A”. In your textbook, Type I sums of squares for A are calculated
while ignoring both the other main e↵ect, B, and the A⇥ B interaction.

7.12.4 Type II Sums of Squares

Type I sums of squares are derived from sequential comparisons of nested models that can result
in an asymmetry between the sums of squares for the two main e↵ects. In the top of Table 3, for
example, SSstate was calculated while ignoring the e↵ects of alcohol, whereas SSalcohol was calculated
after controlling for the e↵ects of state. In the bottom of Table 3, on the other hand SSalcohol was
calculated while ignoring the e↵ects of state, whereas SSstate was calculated after controlling for
the e↵ects of alcohol. An alternative would be to calculate the sum of squares for each main e↵ect
after controlling for the other main e↵ect. For example, we could estimate SSalcohol by comparing
the residuals in the following nested models

score ⇠ 1 + state

score ⇠ 1 + state + alcohol

and estimate SSstate by comparing these nested models

score ⇠ 1 + alcohol

score ⇠ 1 + alcohol + state

These are Type II sums of squares: They are the sum of squares calculated after controlling for the
other main e↵ect but ignoring the interaction.

More generally, the Type II sum of squares for an e↵ect is calculated by comparing nested models
that lack all interactions that include that e↵ect. For example, suppose an experiment contained
factors A, B, and C. The Type II sum of squares for C is obtained by comparing the nested models

score ⇠ 1 + A+B + A : B

score ⇠ 1 + A+B + A : B + C

Note how the models do not contain any interactions that include C (i.e., A:C, B:C, and A:B:C).
According to this definition, the Type I and Type II sum of squares for the State X Alcohol interaction
are equivalent.

The second line in each part of Table 3 lists the sum of squares for one main e↵ect after controlling
for the other main e↵ect (but ignoring the interaction). These are the Type II sums of squares for
state and alcohol. The Type II sum of squares for the interaction is equivalent to the Type I sum
of squares for the interaction, and is listed in the third line of both ANOVA tables.

7.12.5 Type III Sums of Squares

Finally, we consider the sums of squares for an e↵ect that are calculated after accounting for all other
e↵ects in the model. SSstate is calculated by comparing

score ⇠ 1 + alcohol + alcohol : state
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Table 2: Data from drinking study.

no alcohol alcohol Row Means

Michigan

13 15 14
16 12
Ȳ11 =
14

18 20 22 19
21 23 17 18
22 20
Ȳ12 = 20

Ȳ1. = 18

Arizona
13 15 18 14
10 12 16 17
15 10 14
Ȳ21 = 14

24 25 17
16 18
Ȳ22 =
20

Ȳ2. = 15.9

Column Means Ȳ.1 = 14 Ȳ.2 = 20

The fact that the row, column and interaction e↵ects are no longer orthogonal greatly complicates
the analysis of variance. To see why, consider the following two linear models:

score ⇠ 1 + alcohol + state + alcohol : state (45)

score ⇠ 1 + state + alcohol + state : alcohol (46)

The ANOVA tables produced by R for Models 45 and 46 are presented in Table 3. Although the
models di↵er only in the order of terms, the sums of squares assigned by the models to the main
e↵ects di↵er significantly.

Df Sum Sq Mean Sq F value Pr(>F)
state 1 34.96 34.96 5.13 0.0318
alcohol 1 243.75 243.75 35.77 0.0000
state:alcohol 1 0.00 0.00 0.00 1.0000
Residuals 27 184.00 6.81

Df Sum Sq Mean Sq F value Pr(>F)
alcohol 1 278.71 278.71 40.90 0.0000
state 1 0.00 0.00 0.00 1.0000
alcohol:state 1 0.00 0.00 0.00 1.0000
Residuals 27 184.00 6.81

Table 3: ANOVA tables for Model 1 (top) and Model 2 (bottom).

7.12.2 Proportional Cell Frequencies

Before I continue to discuss the problems associated with analyzing unbalanced data, I want to
describe a case where unbalanced data are not hard to analyze. Suppose we had 36 subjects from
Michigan, with 24 in the alcohol condition and 12 in the no-alcohol condition. Also, let’s suppose
that there were 24 subjects from Arizona, with 16 in the alcohol condition and 8 in the no-alcohol
condition. In this case, the ratio of subjects in the alcohol and no-alcohol conditions is 2:1 at both
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calculating Type III SS with drop1
> load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/howell-alcohol.rda") )
> summary(howell)
      state     alcohol       score            id    
 arizona :16   drink:15   Min.   :10.0   s1     : 1  
 michigan:15   none :16   1st Qu.:14.0   s2     : 1  
                          Median :17.0   s3     : 1  
                          Mean   :16.9   s4     : 1  
                          3rd Qu.:19.5   s5     : 1  
                          Max.   :25.0   s6     : 1  
                                         (Other):25 

> xtabs(~state+alcohol,data=howell)
          alcohol
state      drink none
  arizona      5   11
  michigan    10    5

calculating Type III SS with drop1
> options(contrasts=c(“contr.sum","contr.poly"))
> howell.aov.01 <- aov(score ~ alcohol*state,data=howell)
> summary(howell.aov.01)
              Df Sum Sq Mean Sq F value   Pr(>F)    
alcohol        1  278.7  278.71    40.9 7.52e-07 ***
state          1    0.0    0.00     0.0        1    
alcohol:state  1    0.0    0.00     0.0        1    
Residuals     27  184.0    6.81                     

> howell.aov.02 <- aov(score ~ state*alcohol,data=howell)
> summary(howell.aov.02)
              Df Sum Sq Mean Sq F value   Pr(>F)    
state          1  34.96   34.96    5.13   0.0318 *  
alcohol        1 243.75  243.75   35.77 2.23e-06 ***
state:alcohol  1   0.00    0.00    0.00   1.0000    
Residuals     27 184.00    6.81                     

Type I SS are order dependent

calculating Type III SS with drop1

> drop1(howell.aov.01,.~.,test="F")
Model: score ~ alcohol * state
              Df Sum of Sq    RSS    AIC F value    Pr(>F)    
<none>                     184.00 63.209                      
alcohol        1    243.69 427.69 87.357  35.759 2.231e-06 ***
state          1      0.00 184.00 61.209   0.000         1    
alcohol:state  1      0.00 184.00 61.209   0.000         1    

> drop1(howell.aov.02,.~.,test="F")
Model: score ~ state * alcohol
              Df Sum of Sq    RSS    AIC F value    Pr(>F)    
<none>                     184.00 63.209                      
state          1      0.00 184.00 61.209   0.000         1    
alcohol        1    243.69 427.69 87.357  35.759 2.231e-06 ***
state:alcohol  1      0.00 184.00 61.209   0.000         1    

Type III SS are order independent

genotype data

Type III & II SS with unbalanced factorial design



genotype data
> library(MASS)
> data(genotype)
> sapply(genotype,class)
   Litter    Mother        Wt 
 "factor"  "factor" "numeric" 

> xtabs(~Litter+Mother,
data=genotype)

      Mother
Litter A B I J
     A 5 3 4 5
     B 4 5 4 2
     I 3 3 5 3
     J 4 3 3 5

Data from a foster feeding experiment with rat mothers and litters of four different genotypes: A, B, I and J. 
Rat litters were separated from their natural mothers at birth and given to foster mothers to rear.

> round(with(genotype,
   (tapply(Wt,list(Litter,Mother),mean))),
  digits=2)

      A     B     I     J
A 63.68 52.40 54.12 48.96
B 52.33 60.64 53.92 45.90
I 47.10 64.37 51.60 49.43
J 54.35 56.10 54.53 49.06

> round(with(genotype,
  (tapply(Wt,list(Litter,Mother),sd))),
 digits=2)

      A    B    I    J
A  3.27 9.37 5.32 8.76
B  5.53 5.65 5.11 7.64
I 18.10 7.12 8.62 5.37
J  5.33 3.35 8.38 5.34

genotype data (Type III SS)
> options(contrasts=c("contr.sum","contr.poly"))
> rat.aov.01 <- aov(Wt~Litter*Mother,data=genotype)

> anova(rat.aov.01) # sequential SS
Analysis of Variance Table
Response: Wt
              Df Sum Sq Mean Sq F value Pr(>F)   
Litter         3     60    20.1    0.37 0.7752   
Mother         3    775   258.4    4.76 0.0057
Litter:Mother  9    824    91.6    1.69 0.1201   
Residuals     45   2441    54.2
                  
> drop1(rat.aov.01,.~.,test=“F") # Type III SS
Model: Wt ~ Litter * Mother
              Df Sum of Sq  RSS AIC F value Pr(>F)  
<none>                     2441 257                 
Litter         3        28 2468 252    0.17  0.916  
Mother         3       672 3113 266    4.13  0.011
Litter:Mother  9       824 3265 257    1.69  0.120  

SSL + SSM + SSL:M = 1659

SSL + SSM + SSL:M = 1524

Type I (Litter)
Type II (Mother)

Using Anova to compute Type II SS
> library(car) # contains Anova command
> rat.aov.01 <- aov(Wt~Litter*Mother,data=genotype)

> Anova(rat.aov.01,type="2")
Anova Table (Type II tests)

Response: Wt
              Sum Sq Df F value Pr(>F)   
Litter            64  3    0.39 0.7600   
Mother           775  3    4.76 0.0057
Litter:Mother    824  9    1.69 0.1201   
Residuals       2441 45  

Type II (Litter)
Type II (Mother)

Using Anova to compute Type III SS
> library(car) # contains Anova command
> rat.aov.01 <- aov(Wt~Litter*Mother,data=genotype)

> Anova(rat.aov.01,type="3")
Anova Table (Type III tests)

Response: Wt
              Sum Sq Df F value Pr(>F)    
Litter            28  3    0.17  0.916    
Mother           672  3    4.13  0.011  
Litter:Mother    824  9    1.69  0.120    
Residuals       2441 45 

Type III (Litter)
Type III (Mother)



Using aov_ez in afex package
> require(afex)
> N <- dim(genotype)[1] # number of rows/subjects
> genotype$id <- factor(x=seq(1,N),labels="s")
> options(contrasts=c(“contr.sum","contr.poly"))
> rat.ez.T2 <- aov_ez(id=“id",dv="Wt",between=c("Litter","Mother"),

         data=genotype,type=“2")

> rat.ez.T3 <- aov_ez(id=“id",dv="Wt",between=c("Litter","Mother"),
         data=genotype,type="3")

> summary(rat.ez.T3) # type 3 SS
Anova Table (Type 3 tests)

Response: Wt
              num Df den Df  MSE    F    ges Pr(>F)  
Litter             3     45 54.2 0.17 0.0112  0.916  
Mother             3     45 54.2 4.13 0.2158  0.011 *
Litter:Mother      9     45 54.2 1.69 0.2524  0.120  

Using aov_car in afex package
> require(afex)
> N <- dim(genotype)[1] # number of rows/subjects
> genotype$id <- factor(x=seq(1,N),labels="s")
> options(contrasts=c(“contr.sum","contr.poly"))
> rat.car.T2 <- aov_car(Wt~Litter*Mother+Error(id),

           data=genotype,type="2")

> rat.car.T3 <- aov_car(Wt~Litter*Mother+Error(id),
           data=genotype,type="3")

> summary(rat.car.T3) # type 3 SS
Anova Table (Type 3 tests)

Response: Wt
              num Df den Df  MSE    F    ges Pr(>F)  
Litter             3     45 54.2 0.17 0.0112  0.916  
Mother             3     45 54.2 4.13 0.2158  0.011
Litter:Mother      9     45 54.2 1.69 0.2524  0.120 

Linking SSs to hypotheses about 
group means

A x B interaction term

• for 2-way design, A x B is highest-order interaction in the model 

- SSAxB computed by comparing full model to model without interaction term 

• Type I, II, & III SS for highest-order interaction are identical numerically & conceptually 

• SSAxB evaluates null hypothesis that interaction effects are zero 

- “the main effect of A is the same at each level of B” 

- “the main effect of B is the same at each level of A”



Type I SS: weighted marginal means
• weighted marginal means take into account different cell n 

- mean of all scores within row or column 

• unweighted marginal means do not take into account different cell n 

- simply the mean of cell means (does not depend on cell n) 

• Type I SS evaluate null hypothesis that weighted marginal means are equal 

- (refers to SS in 1st line of Type I SS anova table)  

- differences in n across conditions affect results 

- interesting hypothesis?

Type II Sums of Squares

• difficult to state hypothesis about group means evaluated with Type II SS 

- much easier to think about comparison of nested models 

‣ is main effect of A significant after accounting for main effect of B (but 
ignoring A x B interaction)? 

• when SS-interaction is very small, Type II & III SS test same hypothesis…
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analyses (see Howell and McConaughy (1982) for an example), and in those cases testing hypotheses
about weighted marginal means is appropriate.

7.12.11 Type II: crazy!

Type II sums of squares can be used to test the following crazy null hypothesis:

⌃b
k=1

�
njk � (n2

jk/n.k

�
µjk = ⌃j 6=j0⌃ (njknj0k/n.k)µj0k (52)

where j = 1, 2, 3, · · · , (a � 1). Nobody knows what this hypothesis means. So, Type II sums of
squares generally do not test anything that you or I can understand. An exception to this general
rule is when when SSinteraction ⇡ 0. I expand on this point in see Section 7.12.12.

7.12.12 Type III: unweighted means

Type III sums of squares evaluate null hypotheses about unweighted marginal means. In an arow ⇥
bcolumn design, the unweighted mean for row r, Ȳr.(U), is simply the mean of the b cell means in row
r, and the unweighted mean for column c, Ȳ.c(U), is the mean of the a cell means in column c:

Ȳr.(U) =
⌃b

j=1Ȳrj

b
(53)

Ȳ.c(U) =
⌃a

i=1Ȳic

a
(54)

Unweighted marginal means do not take into account the di↵erences in n within each cell.
Provided that the e↵ects in the linear model satisfy the sum-to-zero constraint (as

in Equation 44), Type III sums of squares can be used to evaluate the null hypotheses that the
unweighted marginal row and column means are equal:

Ȳ1.(U) = Ȳ2.(U) = · · · = Ȳa.(U) (55)

Ȳ.1(U) = Ȳ.2(U) = · · · = Ȳ.b(U) (56)

I will say it again: Type III sums of squares can be used to test hypotheses about unweighted
marginal means provided that the e↵ects satisfy the sum-to-zero constraint3. To illustrate this point,
I am going to use drop1 to calculate SSalcohol when we define an e↵ect relative to a baseline condition:

> options(contrasts=c("contr.treatment","contr.poly")) # treatment/baseline definition

> aov.03 <- aov(score~alcohol+state+alcohol:state,data=howell)

> drop1(aov.03,.~.,test="F")

Single term deletions

Model:

score ~ alcohol + state + alcohol:state

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 184.00 63.209

alcohol 1 123.75 307.75 77.154 18.159 0.000221 ***

3Actually, the requirement is that the contrasts used to define the e↵ects are orthogonal in the row-basis of the
model matrix. This means that several definitions of e↵ects can be used to test hypotheses about marginal means
using Type III sums of squares, but the only one considered here is the sum-to-zero definition.
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Type III SS: unweighted marginal means 

• unweighted marginal mean is mean of cell means 

• **when effects are defined using sum-to-zero constraint** 

- Type III SS evaluate null hypothesis that unweighted marginal means are equal 

• when SS-interaction is very small 

- values of Type II & III SS are similar 

- and Type II SS evaluate null hypothesis re unweighted marginal means


