PSYCH 710

Between-Subjects Factorial Designs Higher-Order Interactions \& Unbalanced Designs

Prof. Patrick Bennett

ANOVA example

3×3 factorial ANOVA
> options(contrasts=c("contr.sum", "contr.poly"))
> load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/2-way-data.rda"))
> sapply(df0,class)

subject	group	task	Y
"factor"	"factor" "factor" "numeric"	factors \& 1 numeric variable	

> xtabs(\sim group+task, df0)
task
group t1 t2 t3
g1 101010
g2 101010
g3 101010


```
> aov.01 <- aov(Y~group*task,df0)
> summary(aov.01)
Df Sum Sq Mean Sq F value Pr(>F)
group 2 14689 7345 14.978 2.92e-06 ***
task 2 1666 833 1.698
group:task 4 9179 2295 4.680 0.0019 **
Residuals 81 39719 490
```

significant main effect of group \& group:task interaction

check constant-variance assumption

> df0\$condition <- interaction(df0\$group,df0\$task)
> class(df0\$condition)
[1] "factor"
> levels(df0\$condition)
[1] "g1.t1" "g2.t1" "g3.t1"...
> bartlett.test(Y~condition,df0) \# constant variance

Bartlett test of homogeneity of variances
data: Y by condition
Bartlett's K-squared $=5.0176, \mathrm{df}=8, \mathrm{p}$-value $=0.7557$

```
alternatives to Im & aov
aov_car
> library(afex)
> car.01 <- aov_car(Y~group*task+Error(subject), data=df0)
> summary(car.01) # this lists anova table
Anova Table (Type 3 tests)
Response: Y
\begin{tabular}{lrrrrrr} 
& num Df den Df & MSE & F & ges & \(\operatorname{Pr}(>F)\) \\
group & 2 & 81 & 490.36 & 14.9781 & 0.269982 & \(2.917 e^{-06}\)
\end{tabular}\({ }^{* * *}\)
> # anova(car.01) # same as summary()
> # nice(car.01,es="pes") # anova table with partial-eta-squared (pes)
> # nice(car.01,es="ges") # anova table with generalized-eta-squared (ges)
```


decompose a main effect

(usually not wise to do this when interaction is significant)

alternative to Im \& aov

aov_ez

> library(afex)
> ez.01 <- aov_ez(id="subject"), dv="Y", between=c("group", "task"), data=df0) > summary(ez.01)
Anova Table (Type 3 tests)
Response: Y

	num Df den Df	MSE	F	ges	$\operatorname{Pr}(>F)$	
group	2	81	490.36	14.9781	0.269982	$2.917 e-06$

decompose main effect of group

> aov. 01 <- aov(Y~group*task,df0)
$>$ summary(aov.01)
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$

	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$		
group	2	14689	7345	14.978	$2.92 \mathrm{e}-06$
task	2	1666	833	1.698	0.1895

$\begin{array}{llllll}\text { group:task } & 4 & 9179 & 2295 & 4.680 & 0.0019\end{array}$
Residuals 8139719490
> boxplot(Y~group,df0,
$+\quad$ main="Main Effect (group)")

Main Effect (group)

decompose main effect of group

Tukey HSD
> TukeyHSD(aov.01,which="group")
Tukey multiple comparisons of means
95\% family-wise confidence level
Fit: $\operatorname{aov}(f o r m u l a=Y \sim$ group*task, data $=$ df0)
\$group
diff lwr upr padj
g2-g1 -21.175 -34.82 $-7.524 \quad 0.0011$
g3-g1 -30.541-44.19-16.890 0.0000
$\begin{array}{llll}g 3-g 2 & -9.366 & -23.01 & 4.284 \quad 0.2356\end{array}$

Main Effect (group)

decompose main effect of group

linear contrast

```
> levels(df0$group)
[1] "g1" "g2""03"
< > myc <- c(1,-1/2,-1/2)
> my( <- c(1,-1/2,
> aov.emm <- emmeans(aov.01, specs="group")
NOTE: Results may be misleading due to involvement in interactions
> cres <- contrast(aov.emm,
+ method=list(T1vsT2_T3=myC))
> summary(cres,adjust="scheffe",scheffe.rank=2)
contrast estimate SE df t p.value
T1vsT2_T3 25.9 4.95 81 5.22 <.0001
Results are averaged over the levels of: task
P value adjustment: scheffe method with rank 2
```

decompose an interaction
simple main effects

analyze sub-effect in a simple main effect

decompose task-in-g1 with 2 contrasts

> levels(df0\$task)
[1] "t1" "t2" "t3"
> T3vsT1T2 <- c(1/2,1/2,-1)
> T1vsT2 <- c(-1,1,0)
> \# sum(T3vsT1T2*T1vsT2) \# orthogonal
> contrasts(df0\$task) <- cbind(T3vsT1T2,T1vsT2)

simple main effects

simple main effect of task at g2

> MS.resid <- 490 \# from original ANOVA
> df.resid <- 81 \# from original ANOVA
> aov.task.g2 <- aov(Y~task,

+ data=subset(df0,group=="g2"))
> summary(aov.task.g2)
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$ $2 \quad 2991 \quad 1495.7 \quad 2.301 \quad 0.119$
> (F.task <- 1495.7/MS.resid)
[1] 3.0524

> (p.task <- 1-pf(F.task,2,df.resid))
[1] 0.0527

analyze sub-effect in simple main effect

decompose task-in-g1 simple main effect with 2 contrasts

> aov.task.g1.02 <- aov(Y~task,data=subset(df0,group=="g1"))
> summary(aov.task.g1.02,

simple main effects simple main effect of task at g3					
> MS.resid <- 490 \# from original ANOVA					
> df.resid <- 81 \# from original ANOVA					
```> aov.task.g3 <- aov(Y~task, + data=subset(df0,group=="g3"))```					
> summary(aov.task.g3)					
	Df	SS	MS	F	$\operatorname{Pr}(>F)$
task	2	2976	1488	2.867	0.0743
Residuals	27	14014	519		
> (F.task <- 1488/MS.resid)					
[1] 3.036					
> (p.task <- 1-pf(F.task,2,df.resid))					
[1] 0.053					


> (p.task <- 1-pf(F.task,2,df.resid))
[1] 0.053
using emmeans

## simple main effects

## using joint_tests in emmeans

> library(emmeans)
> \# note formula
$>$ aov.01.emm <- emmeans(aov.01, specs=~task|group)
> joint_tests(aov.01.emm,by="group")
group = g1:
model term df1 df2 F.ratio p.value $\begin{array}{lrrrr}\text { task } & 2 & 81 & 4.973 & 0.0092\end{array}$
group = g2:
model term df1 df2 F.ratio p.value
$\begin{array}{lllll}\text { task } & 2 & 81 & 3.050 & 0.0528\end{array}$
group = g3:
model term df1 df2 F.ratio p.value
task 2813.0350 .0536
N.B. joint_tests uses error term from overall ANOVA

## pairwise tests within each level

## using pairs in emmeans

> aov.01.emm <- emmeans(aov.01, specs=~task|group)
> pairs(aov.01.emm) \# tukey adjustment by default
group = g1:
contrast estimate SE df t.ratio p.value t 1 - t2 $0.3569 .981 \quad 0.036 \quad 0.9993$ $\begin{array}{lllllll}\mathrm{t} 1 & -\mathrm{t} 3 & 27.224 & 9.9 & 81 & 2.749 & 0.0199\end{array}$ $\begin{array}{llllll}t 1-t 3 & 27.224 & 9.9 & 81 & 2.749 & 0.0199 \\ t 2 & -t 3 & 26.868 & 9.9 & 81 & 2.713\end{array}$ group $=g 2$ :

contrast	estimate	SE df	t.ratio	$p$. value
t1 - t2	8.489	9.9	81	0.857

$\begin{array}{lrrrr}\text { t1 - t2 } & 8.489 & 9.981 & 0.857 & 0.6687 \\ \text { t1 - t3 } & 24.1119 .981 & 2.435 & 0.0446\end{array}$ $\begin{array}{llllll}\text { t1 - t3 } & 24.1119 .981 & 2.435 & 0.0446 \\ \text { t2 - t3 } & 15.622 & 9.981 & 1.577 & 0.2612\end{array}$
group = g3:
contrast estimate SE df t.ratio p.value t1 - t2 $\quad-9.2889 .981-0.938 \quad 0.6180$ t1 - t3 $-24.1829 .981-2.442 \quad 0.0438$ t2 - t3 $-14.8949 .981-1.5040 .2944$
P value adjustment: tukey method for comparing a family of 3 estimates

task
decompose an interaction
interaction contrasts

## interaction contrast

does task-contrast differ across groups?
> \# interaction contrast
> levels(df0\$task)
[1] "t1" "t2" "t3"

```
> T3vsT1T2 <- c(1/2,1/2,-1)
> T1vsT2 <- c(-1,1,0)
```

> levels(df0\$group)
[1] "g1" "g2" "g3"
> G3vsG1G2 <- c(1/2,1/2,-1)
$>G 1 v s G 2<-c(1,-1,0)$
> contrasts(df0\$task) <- cbind(T3vsT1T2,T1vsT2)
> contrasts(df0\$group) <- cbind(G3vsG1G2,G1vsG2)



## interaction contrast

does task contrast differ across groups?

```
```

> aov.10 <- aov(Y~group*task,data=df0)

```
```

```
```

> aov.10 <- aov(Y~group*task,data=df0)

```
```

> summary (aov.10,
$+\quad$ split=list(task=list(T3vsT1T2=1,T1vsT2=2),

group=list(G3vsG1G2=1,G1vsG2=2)))					
	Df	SS	MS	F	$\operatorname{Pr}(>\mathrm{F})$
group	2	14689	7345	14.98	<. 001
group: G3vsG1G2	1	7964	7964	16.24	<. 001
group: G1vsG2	1	6726	6726	13.72	<.001
task	2	1666	833	1.69	0.189
task: T3vsT1T2	1	1665	1665	3.39	0.069
task: T1vsT2	1	0	0	0.00	0.979
group:task	4	9179	2295	4.68	0.001
group:task: G3vsG1G2.T3vsT1T2	1	8216	8216	16.75	<.001
group:task: G1vsG2.T3vsT1T2	1	172	172	0.35	0.555
group:task: G3vsG1G2.T1vsT2	1	627	627	1.28	0.261
group:task: G1vsG2.T1vsT2	1	165	165	0.34	0.563

## Residuals

$8139719 \quad 490$

## interaction contrast

does task contrast differ across groups?
> aov. 10 <- aov(Y~group*task,data=df0)
> summary(aov.10,

	Df	SS	MS	F	$\operatorname{Pr}(>F)$
group	2	14689	7345	14.98	<.001
group: G3vsG1G2	1	7964	7964	16.24	<.001
group: G1vsG2	1	6726	6726	13.72	<.001
task	2	1666	833	1.69	0.189
task: T3vsT1T2	1	1665	1665	3.39	0.069
task: T1vsT2	1	0	0	0.00	0.979
group:task	4	9179	2295	4.68	0.001
group:task: G3vsG1G2.T3vsT1T2	1	8216	8216	16.75	<.001
group:task: G1vsG2.T3vsT1T2	1	172	172	0.35	0.555
group:task: G3vsG1G2.T1vsT2	1	627	627	1.28	0.261
group:task: G1vsG2.T1vsT2	1	165	165	0.34	0.563
Residuals	81	39719	490		

## interaction contrast

does task contrast differ across groups?
T3vsT1T2 compares Task 3 to average of Tasks $1 \& 2$

- compute value of this contrast (PSI) for each group
- 1st interaction contrast compares value of T3vsT1T2 in Group 3 to the average of the values in Groups $1 \& 2$ : it is significant
- 2nd interaction contrast compares the value of the T3vsT1T2 contrast in Group 1 to the value in Group 2: it is NOT significant

group:task	4	9179	2295	4.68	0.001
group:task: G3vsG1G2.T3vsT1T2	1	8216	8216	$16.75<.001$	
group:task: G1vsG2.T3vsT1T2	1	172	172	0.35	0.555
Residuals	81	39719	490		

## interaction contrast

does task contrast differ across groups?
> aov. 10 <- aov(Y~group*task,data=df0)
> summary(aov. 10
$+\quad$ split=list(task=list(T3vsT1T2=1,T1vsT2=2),
group=list(G3vsG1G2=1,G1vsG2=2))

$$
\begin{array}{lllll}
\text { Df } & \text { SS } & \text { MS } & \text { F } & \operatorname{Pr}(>F) \\
2 & 14689 & 7345 & 14.98 & <.001
\end{array}
$$

$$
\begin{array}{lrllll}
\text { group } & 2 & 14689 & 7345 & 14.98 & <.001
\end{array}
$$

$$
\begin{array}{llllll}
\text { group: G3vsG1G2 } & 1 & 7964 & 7964 & 16.24<.001
\end{array}
$$

$$
\begin{array}{llllll}
\text { group: G1vsG2 } & 1 & 6726 & 6726 & 13.72<.001
\end{array}
$$

$$
\begin{array}{lrrrrr}
\text { task } & 2 & 1666 & 833 & 1.69 & 0.189
\end{array}
$$

$$
\begin{array}{lllrll}
\text { task: T3vsT1T2 } & 1 & 1066 & 833 & 1.69 & 0.189 \\
& 1 & 1665 & 1665 & 3.39 & 0.069
\end{array}
$$

$$
\begin{array}{lrrrr}
\text { task: T1vsT2 } & 1 & 0 & 0 & 0.00 \\
0
\end{array}
$$

$$
\text { group:task } \quad 4 \quad 9179 \quad 2295 \quad 4.68 \quad 0.001
$$

$$
\text { group:task: G3vsG1G2.T3vsT1T2 } 188216 \quad 821616.75 \text { <.001 }
$$

$$
\begin{array}{lrrrrr}
\text { group:task: G1vsG2.T3vsT1T2 } & 1 & 172 & 172 & 0.35 & 0.555
\end{array}
$$

$$
\begin{array}{llllll}
\text { group:task: G3vsG1G2.T1vsT2 } & 1 & 627 & 627 & 1.28 & 0.261
\end{array}
$$

$$
\begin{array}{llllll}
\text { group:task: G1vsG2.T1vsT2 } & 1 & 165 & 165 & 0.340 .563
\end{array}
$$

Residuals
interaction contrast
contrast (psi) = weighted sum of cell means

contrast weights		Task			cell means		Task		
		1/2	1/2	-1			1/2	1/2	-1
g1	1/2	1/4	1/4	-1/2	g1	1/2	125.1	124.7	97.9
g2	1/2	1/4	1/4	-1/2	g2	1/2	105.6	97.1	81.5
g3	-1	-1/2	-1/2	1	g3	-1	74.2	83.5	93.4

$\Psi=42.99=\frac{1}{4}(125.1)+\frac{1}{4}(124.7)-\frac{1}{2}(97.9)+\frac{1}{4}(105.6)+\frac{1}{4}(97.1)-\frac{1}{2}(81.5)-\frac{1}{2}(74.2)-\frac{1}{2}(83.49)+1(98.4)$
> $\mathrm{n}<-10$
> (SS.contrast <- $n^{*}(p s i \wedge 2) /\left(s u m\left(t . x . g^{\wedge 2)))}\right.\right.$
[1] 8216
(F.contrast <- SS.contrast/MS.resid)
$S S_{\text {contrast }}=\frac{n \Psi^{2}}{\sum_{i}^{a} w_{i}^{2}}$
[1] 16.76

## 3-way ANOVAs

analyzing 2-and 3-way interactions in three-way factorial designs

## 2-way interactions

A x B interaction in an A x B x C factorial design

## $2 \times 2 \times 2$ ANOVA example

> load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/aov-3way-da+n rdn")

Analysis of Variance Table					
Response: score					
	Df	SS	MS	F	$\operatorname{Pr}(>F)$
A	1	9.395	9.395	9.329	0.0028
B	1	4.935	4.935	4.900	0.0288
C	1	0.261	0.261	0.259	0.6115
A:B	1	14.578	14.578	14.475	0.0002
A: C	1	0.014	0.014	0.014	0.9053
B: C	1	0.733	0.733	0.728	0.3953
A:B:C	1	0.000	0.000	0.000	0.9877
Residuals	112	112.79	1.007		


with(myDf, interaction.plot(x.factor=A,
= with(myDf, interaction. plot(x.factor=A, trace. factor= $=$,
response=score,
type"
type=""",
ylab="score",
pch $=(19,21)$ ) $)$
. mext (side $=3$,
text="A×B interaction (ignoring ( $)$ ",
line=0 line $=0.5$,
cex $=1.25$ )

## $2 \times 2 \times 2$ ANOVA example

simple effects of A at B 1 (ignoring C )

```
> # simple main effect of A at B1 (ignoring C)
> curDf <- subset(myDf,B=="b1")
> a.b1 <- aov(score~A,data=curDf)
> summary(a.b1)
A 1 23.69 23.690 27.38<001
Residuals 58 50.19 0.865
A is the simple main effect at B
```


N.B. We could recalculate F \& p values using MS-resid and df-resid from full model

## Analyzing a 3-way interaction

## decomposing a 3-way interaction

evaluate simple $A \times B$ interaction at $C_{1}$
> \# simple AxB interaction at c1:
> aov.101.c1 <- $\operatorname{aov}(s c o r e ~ A * B, d a t a=s u b s e t(m y D f 10, C==" c 1 ")) ~$
> anova(aov.101.c1)
Analysis of Variance Table
Response: score

Df	SS	MS	F	$\operatorname{Pr}(>F)$
1	485.46	485.46	17.3717	0.0001
1	75.68	75.68	2.7083	0.1054
1	3.76	3.76	0.1344	0.7152

$\begin{array}{lrrrrr} & 1 & 75.68 & 75.68 & 2.7083 & 0.1054 \\ \text { A.B } & 1 & 3.76 & 3.76 & 0.1344 & 0.7152\end{array}$
Residuals $561564.95 \quad 27.95$
In this ANOVA table, A is the simple main effect of A at $\mathrm{C}_{1}$

N.B. We could recalculate F \& p values using

MS-resid and df-resid from full model

## decomposing a 3-way interaction

simple $A x B$ interaction at $C_{2}$
> \# simple AxB interaction at c2.
> aov.101.c2 <- $\operatorname{aov}(s c o r e \sim A * B$, data=subset(myDf10, C=="c2"))
> anova(aov.101.c2)
Analysis of Variance Table
Response: score

	$D$	SS		MS	
A	1	12.35	12.35	0.551	0.461
B	1	21.25	21.25	0.948	0.334
A:B	1	299.89	299.89	13.382	$<.001$

$\begin{array}{lllllll}\text { A:B } & 1 & 299.89 & 299.89 & 13.382<.001\end{array}$
Residuals $561254.89 \quad 22.41$
$A: B$ is the simple $A x B$ interaction at $C_{2}$

N.B. We could recalculate F \& p values using MS-resid and df-resid from full model

## decomposing a 3-way interaction

analyze $A x B$ interaction at $C_{2}$ : simple simple main effect of $A$ at $B_{1} \& C_{2}$
> \# evaluate simple simple main effect of A at B1 \& C2:
> aov.101.c2.b1 <- aov(score~A,
data=subset(myDf10,B=="b1"\&C=="c2"))
$>$ anova(aov.101.c2.b1)
Analysis of Variance Table
Response: score
Df SS MS F $\operatorname{Pr}(>F)$
$\begin{array}{llllll}\text { A } & 1 & 95.27 & 95.3 & 3.69 & 0.065\end{array}$
Residuals 28721.9125 .8
simple simple main effect of $A$ at $B_{1} \& C_{2}$
N.B. We could recalculate $F$ \& $p$ values using MS-resid and df-resid from full model


## decomposing a 3-way interaction

analyze $A x B$ interaction at $C_{2}$ : simple simple main effect of $A$ at $B_{2} \& C_{2}$
> \# evaluate simple simple main effect of A at B2 \& C2:
> aov.101.c2.b2 <- aov(score~A,
$>$ anova(aov.101.c2 b2)
Analysis of Variance Table
Response: score
$\begin{array}{llll}\text { Df } & \text { SS } & \text { MS } & F \\ \operatorname{Pr}(>F)\end{array}$
$\begin{array}{lllll}1 & 217 & 217 & 11.39 & 0.002\end{array}$
Residuals 2853319
simple simple main effect of $A$ at $B_{2} \& C_{2}$
N.B. We could recalculate $F \& p$ values using MS-resid and df-resid from full model

## Measures of Association Strength

partial omega-squared

$$
\begin{array}{rll}
\omega_{A, \text { partial }}^{2} & =\frac{\sum_{j=1}^{a}\left(\alpha_{j}^{2} / a\right)}{\sigma_{e}^{2}+\sum_{j=1}^{a}\left(\alpha_{j}^{2} / a\right)} & \begin{array}{l}
\text { variance of treatment effects relative to sum } \\
\text { of treatment effect variance + error variance } \\
\text { calculated from full model }
\end{array} \\
\omega_{B, \text { partial }}^{2} & =\frac{\sum_{k=1}^{b}\left(\beta_{k}^{2} / b\right)}{\sigma_{e}^{2}+\sum_{k=1}^{b}\left(\beta_{k}^{2} / b\right)} & \\
\omega_{A B, p a r t i a l}^{2} & =\frac{\sum_{j=1}^{a} \sum_{k=1}^{b}\left[(\alpha \beta)_{j k}^{2} /(a b)\right]}{\sigma_{e}^{2}+\sum_{j=1}^{a} \sum_{k=1}^{b}\left[(\alpha \beta)_{j k}^{2} /(a b)\right]} & \begin{array}{l}
\text { each partial omega-squared ignores variation } \\
\text { in dependent variable that is due to other } \\
\text { effects in the model }
\end{array}
\end{array}
$$

## Measures of Association Strength

partial omega-squared

$$
\begin{array}{rlrl}
\omega_{A, \text { partial }}^{2}= & \frac{d f_{A}\left(F_{A}-1\right)}{d f_{A}\left(F_{A}-1\right)+N} & \omega_{A, \text { partial }}^{2} & =\frac{S S_{A}-d f_{A} M S_{\text {Residuals }}}{S S_{A}+\left(N-d f_{A}\right) M S_{\text {Residuals }}} \\
\omega_{B, \text { partial }}^{2}= & \frac{d f_{B}\left(F_{B}-1\right)}{d f_{B}\left(F_{B}-1\right)+N} & \omega_{B, \text { partial }}^{2} & =\frac{S S_{B}-d f_{B} M S_{\text {Residuals }}}{S S_{B}+\left(N-d f_{B}\right) M S_{\text {Residuals }}} \\
\omega_{A B, \text { partial }}^{2}= & \frac{d f_{A B}\left(F_{A B}-1\right)}{d f_{A B}\left(F_{A B}-1\right)+N} & \omega_{A B, \text { partial }}^{2} & =\frac{S S_{A B}-d f_{A B} M S_{\text {Residuals }}}{S S_{A B}+\left(N-d f_{A B}\right) M S_{\text {Residuals }}} \\
\text { Cohen 1988: } \\
\omega_{\text {partial }}^{2} & =0.010 \text { is a small association } \\
\omega_{\text {partial }}^{2} & =0.059 \text { is a medium association } \\
\omega_{\text {partial }}^{2} & \geq 0.138 \text { is a large association }
\end{array}
$$

## Measures of Association Strength

- partial eta-squared (pes)
- similar to partial omega squared
- slightly biased estimate of population value
- generalized eta-squared (ges)
- Olegnik \& Algina (2003) Psychological Methods, 8(4): 434-447
- analogous to partial omega squared
- distinguishes between manipulated \& observed variables
- partial omega squared ignores variation in DV due to all other effects in model
- ges does not remove variation due to observed variables (e.g., age, gender, etc.)
- ges may be more invariant across different experimental designs


## Measures of Effect Size

Cohen's f

$$
f_{\text {treatment }}=\sqrt{\frac{\omega_{\text {partial }}^{2}}{1-\omega_{\text {partial }}^{2}}} \quad \begin{array}{ll}
\text { Cohen 1988: } \\
0.01=\text { small et } \\
0.25=\text { mediun } \\
0.40=\text { large ef }
\end{array}
$$

N.B. cohens_f in effectsize package uses partial eta-squared

Cohen's $f$ is a generalization of Cohen's $d$, and for balanced designs is approximately equal to the mean standardized difference between group/marginal means and the grand mean

## Association Strength \& Effect Size (effectsize)

```
library(effectsize)
cohens_f(lm.full.model) # uses eta-squared, not omega-squared
Effect Size for ANOVA (Type I)
```



```
omega_squared(lm.full.model)
Effect Size for ANOVA (Type I)
lal
```

power

## Power for F test



Multiple regression power calculation

$$
\begin{aligned}
u & =2 \\
v & =30 \\
\mathrm{f} 2 & =0.01 \\
\text { sig.level } & =0.05 \\
\text { power } & =0.07319046
\end{aligned}
$$

## Power for F test

$>$ pwr.f2.test $\left(u=3-1, f 2=\left(0.1^{\wedge} 2\right)\right.$, sig.level $=.05$, power $\left.=.8\right)$
Multiple regression power calculation
$\mathrm{v}=963$
$f 2=0.01$
sig.level $=0.05$
power $=0.8$
need $d f=963$ in denominator for power=0.8

- total $N=963+1=964$
- if you using a ( $3 \times 2$ ) factorial design $=>6$ condition
- $964 / 6=162$ Ss per condition


## Unbalanced Data

unequal N per cell


Assigning portions of $\mathrm{SS}_{\text {total }}$ to $\mathrm{A}, \mathrm{B}$, and AxB


ANOVA assigns variation in dependent variable to $A, B$, and $A x B$ Balanced designs: A, B, \& AxB account for separate components of SS $_{\text {total }}$

## Sequential SS for unbalanced designs

- 2 models differ only in the order of terms

$$
\text { score } \sim 1+\text { alcohol }+ \text { state }+ \text { alcohol }: \text { state }
$$

- yet SS assigned to main effects differs between models
- this order dependence is a sign that design is unbalanced
- the main effects are not orthogonal

$$
\text { score } \sim 1+\text { state }+ \text { alcohol }+ \text { state }: \text { alcohol }
$$

sfate	1	34.96	34.96	F value	$\operatorname{Pr}(>\mathrm{F})$
alcohol	1	243.75	243.75	35.77	0.0318
state:alcohol	1	0.00	0.00	0.00	1.0000
Residuals	27	184.00	6.81		
	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$
alcohol	1	278.71	278.71	40.90	0.0000
state	1	0.00	0.00	0.00	1.0000
alcohol:state	1	0.00	0.00	0.00	1.0000
Residuals	27	184.00	6.81		

Table 3: ANOVA tables for Model 1 (top) and Model 2 (bottom).

## Assigning portions of $\mathrm{SS}_{\text {total }}$ to $\mathrm{A}, \mathrm{B}$, and AxB



ANOVA assigns variation in dependent variable to $A, B$, and $A x B$ Unbalanced designs: $A, B, \& A x B$ account for overlapping components of SS $_{\text {total }}$ No unique way of partitioning SStotal

## Rules of assigning Sums of Squares

- Type I (Sequential): SS calculated sequentially/hierarchically.
- SS for an effect adjusted only for preceding terms in model
- Type II: SS for an effect adjusted for all other terms that that do not include the effect in question
- Type III: SS for an effect adjusted for all other terms in the model
- For balanced designs: Type $1=$ Type $2=$ Type 3
- For highest-order interaction: Type $1=$ Type $2=$ Type 3


## Type I Sums of Squares

[order determined by model formula (R uses this rule)]
1.1) score $\sim 1$

SS state ignoring all other factors

## 1.2) score $\sim 1+$ state

1.3) score $\sim 1+$ state + alcohol
1.4) score $\sim 1+$ state + alcohol + state : alcohol

Type ISSs

## 2.1) score $\sim 1$

2.2) score $\sim 1+$ alcohol
2.3) score $\sim 1+$ alcohol + state
2.4) score $\sim 1+$ alcohol + state + alcohol : state


## Type I (Sequential) Sum of Squares

## SS depends on the order of terms listed in the model

## Type I Sums of Squares

[order automatically determined by magnitude of SS... largest SS first]


## Type II Sums of Squares

control for other main effect but ignore AxB interaction


## Assigning portions of ${S S_{\text {total }} \text { to } A, B \text {, and } A x B ~}_{\text {a }}$



ANOVA assigns variation in dependent variable to $A, B$, and $A \times B$ Unbalanced designs: $\mathrm{A}, \mathrm{B}, \& \mathrm{AxB}$ account for overlapping components of $\mathrm{SS}_{\text {total }}$ No unique way of partitioning SS $_{\text {total }}$

## Type III Sums of Squares

control for all other effects \& identify variation that is uniquely associated with each effect

SS ${ }_{\text {alcohol }}$
score $\sim 1+$ state + state $:$ alcohol
score $\sim 1+$ state + alcohol + state $:$ alcohol
$\mathrm{SS}_{\text {state }}$
score $\sim 1+$ alcohol + state : alcohol
score $\sim 1+$ state + alcohol + state $:$ alcohol
$\mathrm{SS}_{\text {state }} \mathrm{xalcohol}$
score $\sim 1+$ state + alcohol
score $\sim 1+$ state + alcohol + state $:$ alcohol

## Assigning portions of $\mathrm{SS}_{\text {total }}$ to $\mathrm{A}, \mathrm{B}$, and AxB

Type III SS can be uniquely associated with 1 effect


Type III SS: A, B, \& AxB account for non-overlapping components of SS total Type III SS will not include all variation: $\mathrm{SS}_{\text {total }}>\left(\mathrm{SS}_{\mathrm{A}}+\mathrm{SS}_{\mathrm{B}}+\mathrm{SS}_{\mathrm{AxB}}+\mathrm{SS}_{\text {residuals }}\right)$

## calculating Type III SS with drop1

> load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/howell-alcohol.rda") ) > summary(howell)

state	alcohol	score		id	
arizona :16	drink:15	Min. $: 10.0$	s1	$: 1$	
michigan:15	none :16	1st Qu.:14.0	s2	$: 1$	
		Median :17.0	s3	$: 1$	
		Mean $: 16.9$	s4	$: 1$	
		3rd Qu.:19.5	s5	$: 1$	
		Max. $: 25.0$	s6	$: 1$	
				(Other):25	

> xtabs(~state+alcohol, data=howell)

	alcohol		
state	drink	none	
arizona	5	11	
michigan	10	5	

## calculating Type III SS with drop1

## Type I SS are order dependent

> options(contrasts=c("contr.sum", "contr.poly"))
> howell.aov. $01<-\operatorname{aov}($ score $\sim$ alcohol*state, data=howell)
> summary(howell.aov.01)
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{lllll}\text { alcohol } & 1 & 278.7 & 278.71 & 40.9 \\ 7.52 e-07 & \text { *** }\end{array}$
$\begin{array}{llllll}\text { state } & 1 & 0.0 & 0.00 & 0.0 & 1\end{array}$
$\begin{array}{llllll}\text { alcohol:state } & 1 & 0.0 & 0.00 & 0.0 & 1\end{array}$
$\begin{array}{llll}\text { Residuals } & 27 & 184.0 & 6.81\end{array}$
> howell.aov. 02 <- aov(score ~ state*alcohol,data=howell)
> summary(howell.aov.02)
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{lllllll}\text { state } & 1 & 34.96 & 34.96 & 5.13 & 0.0318 & \end{array}$
$\begin{array}{llllll} & 1 & 243.75 & 243.75 & 35.77 & 2.23 e-06\end{array}$ ***
$\begin{array}{llrrrr}\text { state:alcohol } 1 & 0.00 & 0.00 & 0.00 & 1.0000\end{array}$
$\begin{array}{lrrr}\text { Residuals } & 27 & 184.00 & 6.81\end{array}$

```
calculating Type III SS with drop1
Type III SS are order independent
> drop1(howell.aov.01,.~.,test="F")
Model: score ~ alcohol * state
 Df Sum of Sq RSS AIC F value Pr(>F)
 alcohol 1 243.69 427.69 87.357 35.759 2.231e-06 ***
 state 1 0.00 184.00 61.209 0.000 1
 alcohol:state 1 0.00 184.00 61.209 0.000
 > drop1(howell.aov.02,.~.,test="F")
 Model: score ~ state * alcohol
 Df Sum of Sq RSS AIC F value Pr(>F)
 state lllllllll
 alcohol 11 243.69 427.69 87.357 35.759 2.231e-06 ***
 state:alcohol 1 1 0.00 184.00 61.209 0.000 0.03-1
```


## calculating Type III SS with drop1

```
Model: score ~ state * alcohol
Df Sum of Sq RSS AIC \(F\) value \(\operatorname{Pr}(>F)\)
\(\begin{array}{llrrrrr}\text { state } & 1 & 0.00 & 184.00 & 61.209 & 0.000 & 1 \\ \text { alcohol } & 1 & 243.69 & 427.69 & 87.357 & 35.759 & 2.231 \mathrm{e}-06 \\ \text { state:alcohol } & 1 & 0.00 & 184.00 & 61.209 & 0.000 & 1\end{array}\)
```


## genotype data

Type III \& II SS with unbalanced factorial design

## genotype data

> library(MASS)
> data(genotype)
> sapply(genotype, class)
Litter Mother Wt
"factor" "factor" "numeric"
> xtabs(~Litter+Mother, data=genotype) Mother
Litter A B I J
A 5345
B
B 4542
I 3353
J 4335
round(withCgenotype,
(tapply(Wt,list(Litter,Mother),mean))), digits=2)
A $\quad$ B I I J
B 52.3360 .6453 .9245 .90
$\begin{array}{ll}52.33 & 60.64 \\ 47.10 & 63.37 \\ 51.60 & 49.93\end{array}$
54.3556 .1054 .5349 .0
> round(withCgenotype
(tapply(Wt, List(Litter, Mother), sd))),
digits=2)
A B I J
3.279 .375 .328 .76
18.107 .128 .625 .37
18.107 .128 .625 .3

J 5.333 .358 .385 .34

Data from a foster feeding experiment with rat mothers and litters of four different genotypes: A, B, I and J Rat litters were separated from their natural mothers at birth and given to foster mothers to rear

## Using Anova to compute Type II SS

> library(car) \# contains Anova command
> rat.aov. 01 <- aov(Wt~Litter*Mother, data=genotype)
> Anova(rat.aov.01 type="2")
Anova Table (Type II tests)

| Response: Wt |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- |
|  | Sum Sq | Df | F value | $\operatorname{Pr}(>F)$ |  |
| Litter | 64 | 3 | 0.39 | 0.7600 | Type II (Litter) |
| Mother | 775 | 3 | 4.76 | 0.0057 | Type II (Mother) |
| Litter:Mother | 824 | 9 | 1.69 | 0.1201 |  |
| Residuals | 2441 | 45 |  |  |  |

## genotype data (Type III SS)

> options(contrasts=c("contr.sum", "contr.poly"))
> rat.aov. 01 <- aov(Wt~Litter*Mother, data=genotype)
$>$ anova(rat.aov.01) \# sequential SS
Analysis of Variance Table
Response: Wt

		60	20.1	0.37	0.7752	Type I (Litter)
Litter	3	675				
Mother	3	775	258.4	4.76	0.0057	Type II (Mother)

> drop1(rat.aov.01,.~.,test="F") \# Type III SS
Model: Wt ~ Litter * Mother
Df Sum of Sq RSS AIC F value $\operatorname{Pr}(>F)$
<none>
$\begin{array}{llllll}\text { Litter } & 3 & 282468252 & 0.17 & 0.916\end{array}$
$\begin{array}{lllllll}\text { Mother } & 3 & 6723113 & 266 & 4.13 & 0.011\end{array}$

## Using Anova to compute Type III SS

> library(car) \# contains Anova command
> rat.aov. 01 <- aov(Wt~Litter*Mother, data=genotype)
> Anova(rat.aov.01,type="3"D
Anova Table (Type III tests)
Response: Wt

Litter	28	3	0.17	0.916	Type III (Litter)
Mother	672	3	4.13	0.011	Type III (Mother)
Litter:Mother	824	9	1.69	0.120	
Residuals	2441	45			

## Using aov_ez in afex package

require(afex)
$\mathrm{N}<-\operatorname{dim}(g e n o t$
N <- dim(genotype)[1] \# number of rows/subjects
$>$ genotypesid <- factor( $x=$ seq( $1, \mathrm{~N}$ ), labels="s")
$>$ options(contrasts=c("contr. sum", "contr. poly"))
> rat.ez.T2 <- aov_ez(id="id",dv="Wt",between=c("Litter", "Mother"), data=genotype, type="2")
> rat.ez.T3 <- aov_ez(id="id", dv="Wt", between=c("Litter", "Mother"), data=genotype,type="3")
> summary(rat.ez.T3) \# type 3 SS
Anova Table (Type 3 tests)

```
Response: Wt
\begin{tabular}{crrrrr}
num Df \\
3 & 45 & 54.2 & 0.17 & 0.0112 & 0.916 \\
3 & 45 & 54.2 & 4.13 & 0.2158 & 0.011 \\
9 & 45 & 54.2 & 1.69 & 0.2524 & 0.120
\end{tabular}\(*\)
```


## Using aov_car in afex package

> N <- dim(genotype) [1] \# number of rows/subjects
> genotype\$id <- factor ( $\mathrm{x}=\mathrm{seq}(1, \mathrm{~N}$ ), label $\mathrm{s}=$ "s")
> options(contrasts=c("contr.sum", "contr.poly"))
> rat.car.T2 <- aov_car(Wt~Litter*Mother+Error(id) data=genotype, type="2")
> rat.car.T3 <- aov_car(Wt~Litter*Mother+Errorfid) data=genotype,type="3")
> summary(rat.car.T3) \# type 3 SS
Anova Table (Type 3 tests)
Response: Wt

Litter	3	45	54.2	0.17	0.0112	0.916
Mother	3	45	54.2	4.13	0.2158	0.011
Litter:Mother	9	45	54.2	1.69	0.2524	0.120

## A x B interaction term

- for 2-way design, $A \times B$ is highest-order interaction in the model
- $\mathrm{SS}_{\mathrm{AxB}}$ computed by comparing full model to model without interaction term
- Type I, II, \& III SS for highest-order interaction are identical numerically \& conceptually
- $\mathrm{SS}_{\mathrm{AxB}}$ evaluates null hypothesis that interaction effects are zero
- "the main effect of $A$ is the same at each level of $B$ "
- "the main effect of $B$ is the same at each level of $A$ "


## Type I SS: weighted marginal means

- weighted marginal means take into account different cell $n$
- mean of all scores within row or column
- unweighted marginal means do not take into account different cell $n$
- simply the mean of cell means (does not depend on cell $n$ )
- Type I SS evaluate null hypothesis that weighted marginal means are equal
- (refers to SS in 1st line of Type I SS anova table)
- differences in $n$ across conditions affect results
- interesting hypothesis?


## Type II Sums of Squares

```
\(\Sigma_{k=1}^{b}\left(n_{j k}-\left(n_{j k}^{2} / n_{\cdot k}\right) \mu_{j k}=\Sigma_{j \neq j^{\prime}} \Sigma\left(n_{j k} n_{j^{\prime} k} / n_{\cdot k}\right) \mu_{j^{\prime} k}\right.\)
\(\Sigma_{k=1}^{b}\left(n_{j k}-\left(n_{j k}^{2} / n_{. k}\right) \mu_{j k}=\Sigma_{j \neq j^{\prime}} \Sigma\left(n_{j k} n_{j^{\prime} k} / n_{. k}\right) \mu_{j^{\prime} k}\right.\)
```

- difficult to state hypothesis about group means evaluated with Type II SS
- much easier to think about comparison of nested models
- is main effect of $A$ significant after accounting for main effect of $B$ (but ignoring $\mathrm{A} \times \mathrm{B}$ interaction)?
- when SS-interaction is very small, Type II \& III SS test same hypothesis...


## Type III SS: unweighted marginal means

- unweighted marginal mean is mean of cell means
- ** when effects are defined using sum-to-zero constraint**
- Type III SS evaluate null hypothesis that unweighted marginal means are equal
- when SS-interaction is very small
- values of Type II \& III SS are similar
- and Type II SS evaluate null hypothesis re unweighted marginal means

