PSYCH 710

Between-Subjects Factorial Designs Higher-Order Interactions & Unbalanced Designs

Prof. Patrick Bennett

ANOVA example

3 x 3 factorial ANOVA

<pre>> summary(a</pre>		-	Ma	E		、	
				F value	-	·	
group	2	14689		14.978		***	
		1666		1.698			
group:task	4	9179	2295	4.680	0.0019	**	
Residuals	81	39719	490				

	es to Im & aov						
aov_car							
> library(afe)							
	<pre>> car.01 <- aov_car(Y~group*task+Error(subject),data=df0) > summary(car.01) # this lists anova table</pre>						
Anova Table (1							
Response: Y							
	Df den Df MSE F ges Pr(>F)						
	2 81 490.36 14.9781 0.269982 2.917e-06 ***						
task	2 81 490.36 1.6983 0.040245 0.189452						
group:task	4 81 490.36 4.6799 0.187724 0.001895 **						
> # nice(car.@	01) # same as summary() 1,es="pes") # anova table with partial-eta-squared (pes) 1,es="ges") # anova table with generalized-eta-squared (ges)						

decompose a main effect

(usually not wise to do this when interaction is significant)

decompose an interaction

simple main effects

interaction contrast does task contrast differ across grou > aov.10 <- aov(Y~group*task,data=d > summary(aov.10,	ps?					mean of Y 90 100 110 120 	0 group 0 g
+ split=list(task=list(80	
+ group=list	-						°'''''''''''''''''''''''''''''''''''''
		SS	MS		Pr(>F)		task
group	2	14689					
group: G3vsG1G2	1	7964	7964	16.24	<.001		
group: G1vsG2	1	6726	6726	13.72	<.001		
task	2	1666	833	1.69	0.189		
task: T3vsT1T2	1	1665	1665	3.39	0.069		
task: T1vsT2	1	0	0	0.00	0.979		
group:task	4	9179	2295	4.68	0.001		
<pre>group:task: G3vsG1G2.T3vsT1T2</pre>	1	8216	8216	16.75	<.001		
group:task: G1vsG2.T3vsT1T2	1	172	172	0.35	0.555		
group:task: G3vsG1G2.T1vsT2	1	627	627	1.28	0.261		
group:task: G1vsG2.T1vsT2	1	165	165	0.34	0.563		
Residuals	81	39719	490				

interaction contrast						120	-	-	group
does task contrast differ across grou	.ps?					110			-0- g3
<pre>> aov.10 <- aov(Y~group*task,data= > summary(aov.10,</pre>	df0)					mean of Y 90 100	-		8
+ split=list(task=list((T3vs	T1T2=1,	T1vsT2=2),		90			` ▲
+ group=list	t(G3v	sG1G2=1	,G1vsG2=	2)))			0		
	Df	SS	MS	F	Pr(>F)		e	t2 task	13
group	2	14689	7345	14.98	<.001				
group: G3vsG1G2	1	7964	7964	16.24	<.001				
group: G1vsG2	1	6726	6726	13.72	<.001				
task	2	1666	833	1.69	0.189				
task: T3vsT1T2	1	1665	1665	3.39	0.069				
task: T1vsT2	1	0	0	0.00	0.979				
group:task	4	9179	2295	4.68	0.001				
group:task: G3vsG1G2.T3vsT1T2	2 1	8216	8216	16.75	<.001				
group:task: G1vsG2.T3vsT1T2	1	172	172	0.35	0.555				
group:task: G3vsG1G2.T1vsT2	1	627	627	1.28	0.261				
group:task: G1vsG2.T1vsT2	1	165	165	0.34	0.563				
Residuals	81	39719	490						

interaction contrast						120	0 group -0- g1
does task contrast differ across grou	ps?					£ -	
<pre>> aov.10 <- aov(Y~group*task,data=</pre>	100 1	· · ·					
<pre>> summary(aov.10,</pre>	8 -	X					
<pre>+ split=list(task=list(</pre>	T3vs	T1T2=1,1	1vsT2=2),		90	
+ group=list	(G3v	/sG1G2=1,	G1vsG2=	2)))			o~B
	Df	SS	MS	F	Pr(>F)		ti da task
group	2	14689	7345	14.98	<.001		
group: G3vsG1G2	1	7964	7964	16.24	<.001		
group: G1vsG2	1	6726	6726	13.72	<.001		
task	2	1666	833	1.69	0.189		
task: T3vsT1T2	1	1665	1665	3.39	0.069		
task: T1vsT2	1	0	0	0.00	0.979		
group:task	4	9179	2295	4.68	0.001		
group:task: G3vsG1G2.T3vsT1T2	1	8216	8216	16.75	<.001		
group:task: G1vsG2.T3vsT1T2	1	172	172	0.35	0.555		
group:task: G3vsG1G2.T1vsT2	1	627	627	1.28	0.261		
group:task: G1vsG2.T1vsT2	1	165	165	0.34	0.563		
Residuals	81	39719	490				

Analyzing a 3-way interaction

 C_2

a1

a2

Measures of Association Strength

partial omega-squared

$$\begin{split} \omega_{A,partial}^{2} &= \frac{\sum_{j=1}^{a} (\alpha_{j}^{2}/a)}{\sigma_{e}^{2} + \sum_{j=1}^{a} (\alpha_{j}^{2}/a)} \\ \omega_{B,partial}^{2} &= \frac{\sum_{k=1}^{b} (\beta_{k}^{2}/b)}{\sigma_{e}^{2} + \sum_{k=1}^{b} (\beta_{k}^{2}/b)} \\ \omega_{AB,partial}^{2} &= \frac{\sum_{j=1}^{a} \sum_{k=1}^{b} \left[(\alpha\beta)_{jk}^{2}/(ab) \right]}{\sigma_{e}^{2} + \sum_{j=1}^{a} \sum_{k=1}^{b} \left[(\alpha\beta)_{jk}^{2}/(ab) \right]} \end{split}$$

variance of treatment effects relative to sum of treatment effect variance + error variance calculated from full model

each partial omega-squared <u>ignores</u> variation in dependent variable that is due to other effects in the model

Measures of Association Strength

partial omega-squared

$$\begin{split} \omega_{A,partial}^2 &= \frac{df_A(F_A - 1)}{df_A(F_A - 1) + N} & \omega_{A,partial}^2 &= \frac{SS_A - df_A MS_{Residuals}}{SS_A + (N - df_A) MS_{Residuals}} \\ \omega_{B,partial}^2 &= \frac{df_B(F_B - 1)}{df_B(F_B - 1) + N} & \omega_{B,partial}^2 &= \frac{SS_B - df_B MS_{Residuals}}{SS_B + (N - df_B) MS_{Residuals}} \\ \omega_{AB,partial}^2 &= \frac{df_{AB}(F_{AB} - 1)}{df_{AB}(F_{AB} - 1) + N} & \omega_{AB,partial}^2 &= \frac{SS_{AB} - df_{AB} MS_{Residuals}}{SS_{AB} + (N - df_{AB}) MS_{Residuals}} \\ \\ \mathbf{Cohen 1988:} \\ \omega_{partial}^2 &= 0.010 \text{ is a small association} \end{split}$$

 $\omega_{partial}^2 = 0.059$ is a medium association $\omega_{partial}^2 \ge 0.138$ is a large association

Measures of Association Strength• partial eta-squared (pes)
• similar to partial omega squared
• slightly biased estimate of population value $\eta_{A,partial}^2 = \frac{SS_A}{SS_{Residuals} + SS_A}$ • slightly biased estimate of population value• generalized eta-squared (ges)
• Olegnik & Algina (2003) Psychological Methods, 8(4): 434-447
• analogous to partial omega squared
• distinguishes between manipulated & observed variables
• partial omega squared ignores variation in DV due to <u>all</u> other effects in model
• ges does <u>not</u> remove variation due to observed variables (e.g., age, gender, etc.)
• ges may be more invariant across different experimental designs

Rules of assigning Sums of Squares

- Type I (Sequential): SS calculated sequentially/hierarchically.
- SS for an effect adjusted only for preceding terms in model
- Type II: SS for an effect adjusted for all other terms that that do not include the effect in question
- Type III: SS for an effect adjusted for all other terms in the model
- For balanced designs: Type 1 = Type 2 = Type 3
- For highest-order interaction: Type 1 = Type 2 = Type 3

Type I (Sequential) Sum of Squares

SS depends on the order of terms listed in the model

Type III Sums of Squares

control for all other effects & identify variation that is uniquely associated with each effect

SSalcohol

 $score \sim 1 + state + state : alcohol$ $score \sim 1 + state + alcohol + state : alcohol$

 $\begin{aligned} & \text{SS}_{\text{state}} \\ & score \sim 1 + alcohol + state: alcohol \\ & score \sim 1 + state + alcohol + state: alcohol \end{aligned}$

$SS_{\text{state x alcohol}}$

 $score \sim 1 + state + alcohol$ $score \sim 1 + state + alcohol + state : alcohol$

calculati	ng Type	e III SS wit	h dr	op1	
<pre>> load(url("ht > summary(howe</pre>		cmaster.ca/benne	ett/ps	/710/datasets/howell-alcohol	.rda"))
state	alcohol	score		id	
arizona :16	drink:15	Min. :10.0	s1	: 1	
michigan:15	none :16	1st Qu.:14.0	s2	: 1	
		Median :17.0	s3	: 1	
		Mean :16.9	s4	: 1	
		3rd Qu.:19.5	s5	: 1	
		Max. :25.0	s6	: 1	
			(Oth	er):25	
> xtabs(~state alco state dri arizona michigan	ohol .nk none 5 11	ata=howell)			

calculating Type III SS with drop1

Type I SS are order dependent > options(contrasts=c("contr.sum","contr.poly")) > howell.aov.01 <- aov(score ~ alcohol*state,data=howell)</pre> > summary(howell.aov.01) Df Sum Sq Mean Sq F value Pr(>F) alcohol 1 278.7 278.71 40.9 7.52e-07 *** state 1 0.0 0.00 0.0 1 alcohol:state 1 0.0 0.00 0.0 1 Residuals 27 184.0 6.81 > howell.aov.02 <- aov(score ~ state*alcohol,data=howell)</pre> > summary(howell.aov.02) Df Sum Sq Mean Sq F value Pr(>F)state 1 34.96 34.96 5.13 0.0318 * 1 243.75 243.75 35.77 2.23e-06 *** alcohol state:alcohol 1 0.00 0.00 0.00 1.0000

calculating Type III SS with drop1

Type III SS are order independent

<none></none>		Sum of Sq		63.209		Pr(>F)
alcohol	1	243.69	427.69	87.357	35.759	2.231e-06 *
state	1	0.00	184.00	61.209	0.000	1
alcohol:state	1	0.00	184.00	61.209	0.000	1

Model: score	~ st	ate	↑ alco	onol				
	Df	Sum	of Sq	RSS	AIC	F value	Pr(>F)	
<none></none>				184.00	63.209			
state	1		0.00	184.00	61.209	0.000	1	
alcohol	1	2	243.69	427.69	87.357	35.759	2.231e-06	***
<pre>state:alcohol</pre>	1		0.00	184.00	61.209	0.000	1	

genotype data

27 184.00 6.81

Residuals

Type III & II SS with unbalanced factorial design

genotype data	<pre>> round(with(genotype, (tapply(Wt,list(Litter,Mother),mean))),</pre>	genotype data (Type III SS)
<pre>> library(MASS) > data(genotype) > sapply(genotype,class) Litter Mother Wt "factor" "factor" "numeric"</pre>	digits=2) A B I J A 63.68 52.40 54.12 48.96 B 52.33 60.64 53.92 45.90 I 47.10 64.37 51.60 49.43 J 54.35 56.10 54.53 49.06	<pre>> options(contrasts=c("contr.sum","contr.poly")) > rat.aov.01 <- aov(Wt~Litter*Mother,data=genotype) > anova(rat.aov.01) # sequential SS Analysis of Variance Table Response: Wt</pre>
<pre>> xtabs(~Litter+Mother, data=genotype) Mother Litter A B I J A 5 3 4 5 B 4 5 4 2 I 3 3 5 3 J 4 3 3 5</pre>	<pre>> round(with(genotype, (tapply(Wt,list(Litter,Mother),sd))), digits=2) A B I J A 3.27 9.37 5.32 8.76 B 5.53 5.65 5.11 7.64 I 18.10 7.12 8.62 5.37 J 5.33 3.35 8.38 5.34</pre>	Df Sum Sq Mean Sq F value Pr(>F) Litter 3 60 20.1 0.37 0.7752 Type I (Litter) Mother 3 775 258.4 4.76 0.0057 Type II (Mother) SSL + SS _M + SS _{L:M} = 1659 Litter:Mother 9 824 91.6 1.69 0.1201 Residuals 45 2441 54.2 > drop1(rat.aov.01,.~.,test="F") # Type III SS Model: Wt ~ Litter * Mother
÷ .	rat mothers and litters of four different genotypes: A, B, I and J. latural mothers at birth and given to foster mothers to rear.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Using <u>Anova to compute Type II SS</u>

> library(car) # contains Anova command > rat.aov.01 <- aov(Wt~Litter*Mother,data=genotype)</pre>

> rat.dov.wi <- dov(wt~Litter*Mother,data=genotyp

> Anova(rat.aov.01(type="2")
Anova Table (Type II tests)

Response: Wt

 Sum Sq Df F value Pr(>F)

 Litter
 64 3
 0.39
 0.7600
 Type II (Litter)

 Mother
 775 3
 4.76
 0.0057
 Type II (Mother)

 Litter:Mother
 824 9
 1.69
 0.1201
 Type II (Mother)

 Residuals
 2441
 45
 5
 5
 5

Using <u>Anova to compute Type III SS</u>

> library(car) # contains Anova command

> rat.aov.01 <- aov(Wt~Litter*Mother,data=genotype)</pre>

```
> Anova(rat.aov.01, type="3")
Anova Table (Type III tests)
```

Response: Wt

	Sum Sq	Df	F value	Pr(>F)	
Litter	28	3	0.17	0.916	Type III (Litter)
Mother	672	3	4.13	0.011	Type III (Mother)
Litter:Mother	824	9	1.69	0.120	
Residuals	2441	45			

Using aov_ez in afex package	Using aov_car in afex package						
> require(afex) > N <- dim(genotype)[1] # number of rows/subjects	<pre>> require(afex) > N <- dim(genotype)[1] # number of rows/subjects</pre>						
<pre>> genotype\$id <- factor(x=seq(1,N),labels="s") > options(contrasts=c("contr.sum","contr.poly"))</pre>	<pre>> genotypeSid <- factor(x=seq(1,N),labels="s") > options(contrasts=c("contr.sum", "contr.poly"))</pre>						
<pre>> rat.ez.T2 <- aov_ez(id="id",dv="Wt",between=c("Litter","Mother"),</pre>	<pre>> options(contrasts=c("contr.sum", contr.poly")) > rat.car.T2 <- aov_car(Wt~Litter*Mother+Error(id),</pre>						
data=genotype,type="2")	data=genotype,type="2")						
<pre>> rat.ez.T3 <- aov_ez(id="id",dv="Wt",between=c("Litter","Mother"),</pre>	<pre>> rat.car.T3 <- aov_car(Wt~Litter*Mother+Error(id),</pre>						
data=genotype,type="3")	data=genotype,type="3")						
	<pre>> summary(rat.car.T3) # type 3 SS</pre>						
<pre>> summary(rat.ez.T3) # type 3 SS Anova Table (Type 3 tests)</pre>	Anova Table (Type 3 tests)						
Response: Wt	Response: Wt						
num Df den Df MSE F ges Pr(>F)	num Df den Df MSE F ges Pr(>F)						
Litter 3 45 54.2 0.17 0.0112 0.916	Litter 3 45 54.2 0.17 0.0112 0.916						
Mother 3 45 54.2 4.13 0.2158 0.011 *	Mother 3 45 54.2 4.13 0.2158 0.011 Litter:Mother 9 45 54.2 1.69 0.2524 0.120						
Litter:Mother 9 45 54.2 1.69 0.2524 0.120							

Linking SSs to hypotheses about group means

A x B interaction term

- for 2-way design, A x B is highest-order interaction in the model
- $SS_{\mbox{\scriptsize SXB}}$ computed by comparing full model to model without interaction term
- Type I, II, & III SS for highest-order interaction are identical numerically & conceptually
- $\mathsf{SS}_{\mathsf{AxB}}$ evaluates null hypothesis that interaction effects are zero
- "the main effect of A is the same at each level of B"
- "the main effect of B is the same at each level of $A^{\prime\prime}$

Type I SS: weighted marginal means

- weighted marginal means take into account different cell n
- mean of all scores within row or column
- <u>unweighted</u> marginal means do not take into account different cell *n*
- simply the mean of cell means (does not depend on cell *n*)
- Type I SS evaluate null hypothesis that weighted marginal means are equal
- (refers to SS in 1st line of Type I SS anova table)
- differences in n across conditions affect results
- interesting hypothesis?

Type II Sums of Squares

 $\Sigma_{k=1}^{b} \left(n_{jk} - (n_{jk}^{2}/n_{.k}) \, \mu_{jk} = \Sigma_{j \neq j'} \Sigma \left(n_{jk} n_{j'k}/n_{.k} \right) \mu_{j'k}$

- difficult to state hypothesis about group means evaluated with Type II SS
- much easier to think about comparison of nested models
- is main effect of A significant after accounting for main effect of B (but ignoring A x B interaction)?
- when SS-interaction is very small, Type II & III SS test same hypothesis...

Type III SS: unweighted marginal means

- unweighted marginal mean is mean of cell means
- **when effects are defined using sum-to-zero constraint**
- Type III SS evaluate null hypothesis that unweighted marginal means are equal
- when SS-interaction is very small
- values of Type II & III SS are similar
- and Type II SS evaluate null hypothesis re unweighted marginal means