PSYCH 710

Between-Subjects Factorial Designs
Main Effects \& Interactions

Prof. Patrick Bennett

Crossed-factorial designs

- at least 2 independent variables/factors (A, B, C, etc.)
- each level of one factor combined with all levels of other factors
- balanced: equal n per cell/condition
- is variation among cell means "statistically significant"?
- is variation compatible with hypothesis that variation is due to chance?
- factorial ANOVA decomposes variation into main effects \& interactions
- main effect: effect associated with one factor
- interaction: effect associated with combination of factors

Main Effect of A
 $$
\hat{\mu}_{j .}=\bar{Y}_{j}
$$

$Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\epsilon_{i j k}$
$\alpha_{j}=\mu_{j .}-\mu_{\text {. }}$.
$\mu_{\mathrm{j} .}=$ marginal row mean [average of cell means in row j]
$\mu_{\text {.. }}=$ grand mean (all scores)
$\sum_{j=1}^{a} \alpha_{j}=0 \quad \mathrm{df}_{\mathrm{A}}=\mathrm{a}-1$
$\bar{Y}_{1 .}{ }^{Z}$
\bar{Y}_{2}.

\bar{Y}_{3}.
\bar{Y}_{4}.

Main Effect of B
 $$
\hat{\mu}_{. k}=\bar{Y}_{. k}
$$

$Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\epsilon_{i j k}$
$\beta_{k}=\mu_{. k}-\mu_{\text {. }}$
$\mu_{. \mathrm{k}}=$ marginal column mean [average of cell means in column k]
$\mu_{. .}=$grand mean (all scores)

Least-squares Estimates of Parameters

$$
\begin{aligned}
& Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\epsilon_{i j k} \\
& \alpha_{j}=\bar{Y}_{j .}-\bar{Y}_{.} \\
& \beta_{k}=\bar{Y}_{. k}-\bar{Y}_{.} \\
& \begin{aligned}
(\alpha \beta)_{j k} & =\begin{array}{l}
\bar{Y}_{j k}-\left(\bar{Y}_{. .}+\left(\bar{Y}_{j .}-\bar{Y}_{. .}\right)+\left(\bar{Y}_{. k}-\bar{Y}_{. .}\right)\right) \\
\\
\\
\bar{Y}_{j k}-\bar{Y}_{j .}-\bar{Y}_{. k}+\bar{Y}
\end{array}
\end{aligned} \\
& \text { degrees-of-freedom: } \\
& d f_{A}=(a-1) \\
& \mathrm{df}_{\mathrm{B}}=(\mathrm{b}-1) \\
& d f_{\text {AxB }}=(a-1)(b-1) \\
& \bar{Y}_{j k}-\bar{Y}_{. .}-\hat{\alpha}_{j .}-\hat{\beta}_{. k} \\
& \text { i.e., what is left over after } \\
& \text { accounting for } 2 \text { main effects }
\end{aligned}
$$

Interaction Effects (A x B)

$Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\epsilon_{i j k}$ $(\alpha \beta)_{j k}=\mu_{j k}-\left(\mu_{. .}+\alpha_{j}+\beta_{k}\right)$

i.e., interaction is what is left over after
$d f_{A \times B}=(a-1)(b-1)=d f_{A} x d f_{B}$
accounting for 2 main effects
.

	Factor B	
B_{1}	B_{2}	B_{3}
$A_{1} B_{1}$	$A_{1} B_{2}$	$A_{1} B_{3}$
$A_{2} B_{1}$	$A_{2} B_{2}$	$A_{2} B_{3}$
$A_{3} B_{1}$	$A_{3} B_{2}$	$A_{3} B_{3}$
	$A_{4} B_{1}$	$A_{4} B_{2}$
		$A_{4} B_{3}$

One interaction effect per cell

Interpretation of Model

$$
\begin{array}{ll}
Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+ & \epsilon_{i j k} \\
Y_{i j k}=\hat{Y}_{i j k}+\epsilon_{i j k} & \text { observed score }=\text { predicted score }+ \text { residual } \\
\hat{Y}_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k} & \begin{array}{l}
\text { predicted score }=\text { sum of intercept, main effects, and } \\
\text { interaction }
\end{array} \\
\hat{Y}_{i j k}=\bar{Y}_{i j} & \text { predicted score = cell mean } \\
Y_{i j k}=\bar{Y}_{i j}+\epsilon_{i j k} & \text { observed score = cell mean + residual }
\end{array}
$$

anova breaks variation among cell means into 3 independent components: variation due to A, variation due to B, and variation due to $A \times B$
model has $1+(a-1)+(b-1)+(a-1)(b-1)$ free parameters, or one for each cell mean

Evaluating Main Effect of A

$$
\begin{gathered}
\text { Null Hypothesis } \\
\alpha_{1}=\alpha_{2}=\cdots=\alpha_{a}=0 \\
\bar{Y}_{1 .}=\bar{Y}_{2 .}=\cdots=\bar{Y}_{j .} .
\end{gathered}
$$

Calculating Sum-of-Squares $\mathrm{A}\left(\mathrm{SS}_{\mathrm{A}}\right)$

Marginality

http://pnb.mcmaster.ca/bennett/psy710/notes/mw7-marginality-example.htm

Marginality

http://pnb.mcmaster.ca/bennett/psy710/notes/mw7-marginality-example.html

Evaluating Main Effect of A

$$
\begin{aligned}
& \alpha_{1}=\alpha_{2}=\cdots=\alpha_{a}=0 \\
& \bar{Y}_{1 .}=\bar{Y}_{2 .}=\cdots=\bar{Y}_{j}
\end{aligned}
$$

$$
S S_{A}=E_{R}-E_{F}=\sum_{j=1}^{a} \sum_{i=1}^{n} \alpha_{j}^{2}
$$

$$
S S_{\text {Residuals }}=E_{F}=\sum_{j=1}^{a} \sum_{k=1}^{b} \sum_{i=1}^{n}\left(Y_{i j k}-\bar{Y}_{j k}\right)^{2} \quad \text { [calculated using full model] }
$$

$F_{A}=\frac{S S_{A} /(a-1)}{S S_{\text {Residuals }} /(a b(n-1))} \quad$| $\mathrm{F}_{\mathrm{A}}=\mathrm{MS}_{\mathrm{A}} \div \mathrm{MS}_{\text {residuals }}$ |
| :--- |
| $\mathrm{df}=\{(\mathrm{a}-1), \mathrm{ab}(\mathrm{n}-1)\}$ |

Evaluating Main Effect of B

$$
\begin{aligned}
& \beta_{.1}=\beta_{.2}=\cdots=\beta_{. b}=0 \\
& \bar{Y}_{.1}=\bar{Y}_{.2}=\cdots=\bar{Y}_{. b}=0
\end{aligned}
$$

$$
S S_{B}=\sum_{k=1}^{b} \sum_{i=1}^{n} \beta_{k}^{2}
$$

$$
S S_{\text {Residuals }}=E_{F}=\sum_{j=1}^{a} \sum_{k=1}^{b} \sum_{i=1}^{n}\left(Y_{i j k}-\bar{Y}_{j k}\right)^{2} \quad \text { [calculated using full model] }
$$

$F_{B}=\frac{S S_{B} /(b-1)}{S S_{\text {Residual }} /(a b(n-1))} \quad$	$\mathrm{F}_{\mathrm{B}}=\mathrm{MS}_{\mathrm{B}} \div \mathrm{MS}_{\text {residual }}$
$\mathrm{df}=\{(\mathrm{b}-1), \mathrm{ab}(\mathrm{n}-1)\}$	

Calculating Sum-of-Squares $\mathrm{AxB}\left(\mathrm{SS}_{\mathrm{AxB}}\right)$
Nested Models

$Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\epsilon_{i j k}$
$Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+\epsilon_{i j k}$

reduced model [does not violate principle of marginality!]
$S S_{\text {AxB }}$ is change in $\mathrm{SS}_{\text {residuals }}$ that occurs when all interaction effects are set to zero.

ANOVA table

	ss	df	MS	F	p
A	SSA	$d f_{A}=\mathrm{a}-1$	$\mathrm{MS} \mathrm{S}_{\mathrm{A}}=\mathrm{SS}_{A} / \mathrm{df} \mathrm{A}_{\mathrm{A}}$	MSA/MS ${ }_{\text {w }}$	
B	$\mathrm{SS}_{\text {B }}$	$\mathrm{df}_{\mathrm{B}}=\mathrm{b}-1$	$\mathrm{MS}_{\mathrm{B}}=\mathrm{SS}_{\mathrm{B}} / \mathrm{df} \mathrm{d}_{\mathrm{B}}$	$\mathrm{MS}_{\mathrm{B}} / \mathrm{MS}_{\mathrm{w}}$	
A \times B	$\mathrm{SS}_{\mathrm{AxB}}$	$d f_{\text {Ax }}=(a-1)(b-1)$	$\mathrm{MS} \mathrm{AxB}=\mathrm{SS}_{\text {Axx }} / \mathrm{df}_{\mathrm{AxB}}$	$\mathrm{MS}_{\text {Axx }} / \mathrm{MS} \mathrm{S}_{\mathrm{w}}$	
Within Cell (residuals)	SSw	$\mathrm{df} \mathrm{w}_{\mathrm{w}}=\mathrm{ab}(\mathrm{n}-1)$	MS ${ }_{w}=\mathrm{SS}_{\mathrm{w}} / \mathrm{df}{ }_{\mathrm{w}}$		

Evaluating AxB Interaction

```
(\alpha\beta)}\mp@subsup{)}{11}{}=(\alpha\beta\mp@subsup{)}{12}{}=\cdots=(\alpha\beta\mp@subsup{)}{ab}{}=
[null hypothesis]
```


Interpreting Interactions

Interpreting AxB Interaction

- interaction effect is the difference between cell mean and the sum of the intercept \& main effects:

$$
(\alpha \beta)_{i j}=\bar{Y}_{i j}-\mu-\alpha_{j}-\beta_{k}
$$

- if interaction effects are zero, then differences among cell means are due differences between alpha's and/or beta's (row \& column effects)
- if interactions are not zero then effect of A depends on level of B (and effect of B depends on level of A)

Interactions

- 2-way (A \times B) interactions assess whether the effect of one factor depends on the level of the other factor
- Does the effect of A depend on the level of B ?
- Does the effect of B depend on the level of A ?
- 3-way ($\mathrm{A} \times \mathrm{B} \times \mathrm{C}$) interactions assess whether the interaction between 2 factors depends on the level of the 3rd factor
- Does the AxB interaction depend on the level of C?
- Does the $A x C$ interaction depend on the level of B ?
- Does the BxC interaction depend on the level of A?

Graphical Depiction of AxB Interaction

Graphical representation of 2-way interactions

Significant AxB interaction implies:

- Difference between a1 \& a2 depends on level of B. Difference between b1 \& b2 depends on level of A.

Significant 2-way interactions imply a significant deviation from parallelism.
a1 Factor A a2

a1 Factor A a2
a1 Factor A a2

Incorrect Interpretations of Interactions

common problem in published scientific papers

- It often is interesting to find interactions
- But often they are "discovered" with faulty statistical methods

Pubistade: 26 Augusur 20 n
Erroneous analyses of interactions in neuroscience: problem of significance

${ }^{12 k}$ Nocoseses 1422 Citionors 1992 Altrexic
Abstract
4hteor, a comparison of fwo xperimental fefect requires statisisial teston their
diference. Inp practece, this comparison is often based on anincorrect procedure involing

 neurosicince
beguling.

Incorrect Interpretations of Interactions

- Interaction determines if difference between 2 differences is significant
- Is $\left\{\left(b_{2}-b_{1}\right)\right.$ at $\left.a_{1}\right\}$ minus $\left\{\left(b_{2}-b_{1}\right)\right.$ at $\left.a_{2}\right\}$ significantly different from zero?
- Not the same as doing separate tests of $\left(b_{2}-b_{1}\right)$ at a_{1} and ($\left.b_{2}-b_{1}\right)$ at a_{2}
- Example: if t -test 1 is not significant but t test 2 is significant, will AxB interaction be significant?
- not necessarily...

only 1 t -test is significant and AxB	$>$ anova(lm.1) Analysis of Variance Table
interaction is not significant	
	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '. 0.1 ', 1 $>$ interaction.plot $(a, b, y, y l i m=c(6,20))$ $>$ t.test $(y \sim b$, subset(theData, $a=$ 'a1'), var.equal $=T$) Two Sample t-test
	data: y by b $t=-1.6206, \mathrm{df}=18, \mathrm{p}$-value $=0.1225$ alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -3.0632850 0.3953442 sample estimates: mean in group b1 mean in group b2
	$>\operatorname{t.test}\left(\mathrm{y} \sim b\right.$, subset(theData, $\left.a==^{\prime} a 2^{\prime}\right)$, var. equal $=\mathrm{T}$) Two Sample t-test
\qquad	data: y by b $t=-2.4462, d f=18, p$-value $=0.02494$ 95 percent confidence interval: -4.0415928-0.3068517 sample estimates: mean in group b1 mean in group b2 10.64291

Incorrect Interpretations of Interactions

- Suppose both tests are significant... does that mean that the effect of B does not depend on A ?
- i.e., that the AxB interaction is not significant?
- not necessarily

a1 Factor $\mathrm{A} \quad$ a2

both t-tests are significant and

 $A x B$ interaction is significant

alternative hypothesis: true difference in means is not equal to θ | 95 percent confidence |
| :---: |
| -6.291593 |
| -2.558852 |

$-6.291 .193-$-2.55685
sample estimates:
mean in trout b1 mean in $\underset{10.12291}{\substack{\text { group } \\ 14.56724}}$

Incorrect Interpretations of Interactions

- Suppose that both tests are not significant... does that mean that the effect of B does not depend on A ?
- i.e., that the AxB interaction is not significant? - not necessarily

a1 Factor A a2

both t-tests are not significant and

 AxB interaction is not significant
> anovac(lm. 1 1)
Analysis of Variance Table

Two Sanple t-test
 alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval: ${ }^{95}$ percent confidence

> t.test($y-b$, subset(thelata, $a-$ - $a 2^{\prime}$ '), var. equal-T)
Two Sanple t-test


```
Response: y% Sum sa Mean Sa F value Pr(>) Prom
M
S--gif. codes: 0 0** 0.001 (**) 0.01 (*) 0.05 4, 0.1 , ,
> interaction.plot(a, b, ,y,ylim=c(6,12))
     t.test(y-b, subset(theData, a=='a1'),var. equal=T)
    Two Sample t-test
t=1.4166, df = 18, p-value = 0.1737
t=1.416, df 18, p-value=0.1737,
    *)
-0.563285 2.89534
```



```
> t.test(y-b, subset(theData,a=' 'ar'),var.equal=T)
    Two Sample t-test
L=-1.623, df = 18, p-value =0.1265
95 percent confidencen. itterval:
-3.29152280.4431483
N
```


$A \times B \neq$ Pairwise tests of differences

Incorrect Interpretations of Interactions

Nieuwehnuis, Forstmann, \& Wagenmakers, Nature Neurosci, 2011, 14, 1105-1107

- To determine if the effect of one variable depends on another...
- e.g., if the effect of one variable differs between groups or ages or genders
- ...you need to assess the interaction between the 2 variables
- do not rely on significance tests performed separately on the different groups

R example

7.6 an example

In this section I will illustrate how to analyze data collected in an experiment that used a balanced factorial design. There are two factors, A and B, and each factor has two levels. The dependent variable is denoted by y. Finally, there are 6 scores per cell. Here is how I initialized R and created the fake data:
> options(contrasts=c("contr.sum","contr.poly"))
$>$ a<-rep(c(-1,-1,1,1),each=6)
> b<-rep(c(-1,1,-1,1),each=6)
$>$ ab<-rep $(c(-1,1,1,-1)$, each $=6)$
$>y<-10+2 * a+1 * b+0.5 * a b$
$>$ set.seed(123456);
> $n z<-$ rnorm (y)
> $y<-y+n z$;
> af<-factor (a,labels=c("a1","a2"),ordered=F)
$>a f<-f a c t o r(a, l a b e 1 s=c(" b), " b 2 ")$,ordered= $=F)$
$>b f<-f a c t o r(b, l a b e l s=c(" b 1 ", ")$
> myData <- data.frame (y,af,bf)
> names(myData) <- c("y","A","B")

Sequential Sums of Squares

> lm.full.model <- lm(y ~ $1+A+B+A: B$, data=myData)
> anova(lm.full.model)

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$
A	1	94.25	94.25	84.59	0.0000
B	1	23.21	23.21	20.83	0.0002
A:B	1	4.63	4.63	4.15	0.0550
Residuals	20	22.28	1.11		
Table 1. ANOVA table for full model.					

[^0]
SS ${ }_{\mathrm{A}}$ obtained with a different comparison

> $\operatorname{lm} .01<-\operatorname{lm}(y$ ~ 1 , data=myData)
> lm.02.a <- $\operatorname{lm}(y \sim 1+A$, data=myData)
$>$ anova(lm.01, lm.02.a)

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$
A	1	(94.25)	94.25	84.59	0.0000
B	1	23.21	23.21	20.83	0.0002
A:B	1	4.63	4.63	4.15	0.0550
Residuals	20	22.28	1.11		
Table 1: ANOVA table for full model.					

```
Model 1: y ~ 1
Model 2: y ~ 1 + A
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 23 144.370
2 22 50.124 1 1 94.246 41.366 1.801e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

Note that SS_{A} is the same value as the one listed in full ANOVA table. F differs because the estimate of population error variance (the F 's denominator) differs.

SS ${ }_{A}$ computed with 4th comparison of nested models

- in theory, we could drop A from full model
- full: $y \sim 1+A+B+A: B$
- reduced: $y \sim 1+B+A: B$
- $\mathrm{SS}_{\mathrm{A}}=\triangle \mathrm{SS}_{\text {resid }}$
- However, this comparison does not work (easily)
> $\operatorname{lm} .04<-\operatorname{lm}(y \sim 1+B+A: B$, data=myData)
> anova(lm.04, lm.full.model)

SS A_{A} obtained with a third comparison

```
> lm.02.b <- lm(y ~ 1 + B, data=myData)
> lm.03 <- lm(y ~ 1 + A + B, data=myData)
> anova(lm.02.b, lm.03)
```

\qquad

Table 1: ANOVA table for full model.
Analysis of Variance Table
Model 1: y ~ 1 +
Model 2: y $\sim 1+A+B$
Res.Df RSS Df Sum of $\mathrm{Sq} \quad \mathrm{F} \quad \operatorname{Pr}(>\mathrm{F})$
$1 \quad 22 \quad 121.16$
$\begin{array}{lllll}1 & 21 & 26.91 & 1 & 94.246 \\ 7 & 73.549 & 2.654 \mathrm{e}-08 & \text { *** }\end{array}$
Signif. codes: $0{ }^{\prime} * * * ' 0.001 ~ ' * * ' ~ 0.01 ~ ' * ' ~ 0.05 ~ ' . ' ~ 0.1 ~ ' ~ ' ~ 1 ~ 1 ~$

Note that $S S_{A}$ is the same value as the one listed previously
Again, F differs because the estimate of population error variance differs across comparisons.

R and Marginality

```
> lm.04 <- lm(y ~ 1 + B + A:B,data=myData)
```

$>$ anova(lm.04, lm.full.model)

Analysis of Variance Table
$>$ anova(lm.04, lm.full.model)

```
Model 1: y ~ 1 + B + A:B
```

Model 1: y ~ 1 + B + A:B
Model 2: y ~ 1 + A + B + A:B
Model 2: y ~ 1 + A + B + A:B
Res.Df RSS Df Sum of Sq F Pr (>F)
Res.Df RSS Df Sum of Sq F Pr (>F)
1 20 22.284
1 20 22.284
2 20 22.284 0 3.5527e-15

```
2 20 22.284 0 3.5527e-15
```

Notice that df hasn't changed although we dropped A from model.

R and Marginality

> anova(lm.04) ffor A has been incorporated into $A x B$

Analysis of Variance Table
Response: y
$\begin{array}{llllll} & \text { Df } & \text { Sum Sq Mean Sq F value } & \operatorname{Pr}(>\mathrm{F}) \\ \text { B } & 1 & 23.214 & 23.214 & 20.835 & 0.0001883^{* * *} \\ \text { B:A } & 2 & 98.872 & 49.436 & 44.370 & 4.43 \mathrm{e}-08\end{array}$
Residuals $2022.284 \quad 1.114$

R and Marginality

> dummy.coef(lm.full.model)
Full coefficients are

alternatives to Im \& aov

```
library(afex)
N <- dim(myData) [1] # number of rows/subjects
myData$subj <- factor(x=1:N,labels="s")
car.model.01 <- aov_car(y~1+A+B+A:B+Error(subj), data=myData)
ez.model.01 <- aov_ez(id="subj",dv="y", between=c("A","B"), data=myData)
# nice(car.model.01) # this command gives same anova table as next line.
nice(ez.model.01,es="pes") # pes is partial eta-squared
## Anova Table (Type 3 tests)
##
## Response:
# Effect df MSE
Effect df MSE _
## 1 < A 1, 20 1.11 84.59 *** .809 < <.001 
## 2 A B 1, 20 1.11 20.83**** .510 < 1, 20 1.11 4.15 + .172 .055
## -
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
```

decomposing a main effect
analyses of "sub-effects"

Analyzing a Significant Main Effect

> mw.aov.01<-aov(score~drug*biofeedback, data=mw75)
> summary(mw.aov.01)

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$
drug	2.00	1882.07	941.03	5.21	0.01
biofeedback	1.00	1904.03	1904.03	10.54	0.00
drug:biofeedback	2.00	1248.07	624.03	3.46	0.05
Residuals	24.00	4334.80	180.62		

Table 3: ANOVA for biofeedback experiment.

Analyzing a Significant Main Effect

testing sub-effects with linear contrasts
\# levels(mu75£drug) \# "drugX""drugY""drugZ"
c1 <- c (-1,1,0)
compares drugs $x \& y$ ignoring z
$c 2<-c(-1,-1,2)$
N.B. contrast for biofeedback is $\mathrm{s}(-1,1)$ because it has only 2 levels
yC <- cbind (c1,c2)
mw. aov.02<-aov (score~drug*biofeedback, data=mw75)
summary(mw.aov.02, split=list(drug=list(1,2)))

\#\# drug:biofeedback
\#\# drug:biofeedback:
\#\# Residuals
\#\# -

Example (section 7.11 in course notes)

> mw11.lm.01 <- lm(score ~ $1+g f+t f+g f: t f$, data $=$ mw11)
$>$ anova(mw11.1m.01)
tf: task factor (3 levels)

Analysis of Variance Table
Response: score


```
ll
lf:tf 
lor:tf 
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
> MS.w <- 157.8
```

> df.w <- 36

decomposing an interaction

simple main effects

Example Table 7.11 in Textbook

interaction.plot(x.factor=mw11\$gf,
trace.factor=mw11\$tf,
response=mw11\$score,
trace.label="task")
illustration of group x task interaction analyze simple main effect of task in each group

Simple Main Effect of Task

1)

Analyze task within each group:
> lm.task.hunt <- lm(score ~ $1+t f$, data $=\operatorname{subset}(m w 11, g f==$ "huntingtons")
> lm.task.amnesic <- lm(score ~ $1+t f$, data $=\operatorname{subset}(m w 11, g f==$ "amnesic"))
> lm.task.control <- lm(score ~ 1 + tf, data $=\operatorname{subset(mw11,~gf~==~"control"))~}$
2)

Print ANOVA table:
> anova(1m.task. hunt)
Analysis of Variance Table
Response: score
tf Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{lllllllllll} & \text { tf } & 2 & 9250 & 4625.0 & 29.365 & 2.385 e-05 * *\end{array}$
Signif. codes: 0 '***' 0.001 '**' $0.01^{\prime}{ }^{\prime} '^{\prime} 0.05^{\prime}$ '.' 0.1^{\prime} ' ' 1
3)

Recalculate F \& P values:
> (F.task.hunt <- 4625/MS.w)
[1] 29.30925
> (p.task.hunt <- 1-pf(F.task.hunt, df1 = 2,df2 =df.w))
[1] 2.791744e-08
Signif. codes: $0{ }^{\prime} * * * ' 0.0011^{\prime \prime *}{ }^{\prime} 0.01^{\prime}$ *' $^{\prime} 0.05$ '.' 0.1^{\prime} ' 1

Tukey HSD applied to Simple Main Effect (emmeans)
library (emmeans)
11:(
pairs(mw11.em) \# tukey adjustment used by default

```
## gf = amnesic
## contrast crassification \
grammar - classificatio
## classification - recognition
*# gf = huntingtons:
### gf = huntingtons: 
# classification - recognition <rolloll
*# gf = control
# contrast estimate SE df t.ratio p.value
## grammar - rlassifitaction 
## classification - recognition }\quad\begin{array}{llllll}{-15}&{7.94}&{36}&{-1.888}&{0.1567}
```

\#\#
\#\# \# p value adjustment: tukey method for comparing a family of 3 estimates

Simple Main Effect of Task (emmeans)

```
library(emmeans)
mw11.em <- emmeans(mw11.lm.01,specs=~tf\gf) # note the formula!
joint_tests(mw11.em,by="gf") # simple main effect of task for each group
## model term df1 df2 F.ratio p.valu
## tf 2 36 0.792 0.4606
## gf = huntingtons:
*)
## gf = control:
## model term df1 df2 F.ratio p.value
## tf 2 36 2.377 0.1073
mw11.em <- emmeans(mw11.Im.01, specs="tf", by="gf") \# different way of specifying emmeans object
```

decomposing an interaction
interaction contrasts

evaluating specific interactions

- often an experimenter expects an interaction
- a particular sub-effect on one factor to varies across levels of other factor
- Example: predictions for task x group interaction
- Task sub-effect: difference between implicit \& explicit memory tasks
- task contrast $=\left(0.5^{*}\right.$ grammar $+0.5^{*}$ classification $)-\left(1^{*}\right.$ recognition $) \neq 0$
- prediction: task contrast differs between Amnesic \& Huntington's patients
- Amnesic patients have deficits on explicit, not implicit, memory tasks
- Huntington's patients have deficits on implicit, not explicit, memory tasks
- Task Contrastamnesic - Task Contrasthunt $\neq 0$

creating interaction contrast weights

derive weights to determine if implicit/explicit contrast differs between Amnesic \& Huntington's groups

cell weight $=$ row x column

creating interaction contrast weights

derive weights to determine if implicit/explicit contrast differs between Amnesic \& Huntington's groups

weights for group contrast

interaction contrast

```
|
contrasts(mv11$gf)<-cbind (c(1,-1,0))
```

summary (mw11.aov. 02, split $=1$ ist ($\mathrm{tf}=1$ ist (task=1), $\mathrm{gf}=1$ ist (group=1)))

\#\# Signif. codes:
(R2.alerting <- 4594/5000) \# strength of association for our contrast
\#\# [1] 0.9188
R^{2} effect $=\mathrm{SS}_{\text {contrast }} / S_{\text {total }}=4594 /(5250+5250+5000+5680)=0.217$
$\mathrm{R}^{2}{ }_{\text {alerting }}=\mathrm{SS}_{\text {contrast }} / \mathrm{SS}_{\text {interaction }}=4594 /(5000)=\underline{0.919} \longleftarrow$ almost all of the interaction is accounted for by our contrast

alternative method

creating interaction contrast weights

derive weights to determine if implicit/explicit contrast differs between Amnesic \& Huntington's groups

Cell	task	group	task \times group
Amnesi-Grammar	0.5	1	0.5
Amnesi-Classification	0.5	1	0.5
Amesic-Recog	-1	1	-1
Huntington's - Grammar	0.5	-1	-0.5
Huntington's - Classification	0.5	-1	-0.5
Huntington's - Recog	-1	-1	1
Control - Grammar	0.5	0	0
Control - Classification	0.5	0	0
Control - Recog	-1	0	0

interaction contrast with emmeans
1ibrary (emmeans)
mu11.emm. 01 <- emmeans(mw11.aov. 02, specs=~tf+gf) \# list 9 conditions
\# method 1:
contrast (mw11 emm. 01, method $=1$ ist $(\mathrm{c} 1)) \quad \# F=t 2=29.12$

[^0]: $Y_{i j k}=\mu+\epsilon_{i j k}$
 $Y_{i j k}=\mu+\alpha_{j}+\epsilon_{i}$
 $Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+\epsilon_{i j k}$
 $Y_{i j k}=\mu+\alpha_{j}+\beta_{k}+(\alpha \beta)_{j k}+\epsilon_{i j k}$

