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Main Effects & Interactions

Prof. Patrick Bennett

Crossed-factorial designs

• at least 2 independent variables/factors (A, B, C, etc.) 

• each level of one factor combined with all levels of other factors 

- balanced: equal n per cell/condition 

• is variation among cell means “statistically significant”? 

- is variation compatible with hypothesis that variation is due to chance?  

• factorial ANOVA decomposes variation into main effects & interactions 

- main effect: effect associated with one factor 

- interaction: effect associated with combination of factors 

Linear Model

Bennett, PJ PSY710 Chapter 7

Notes on Maxwell & Delaney

PSY710

7 Factorial Designs

In previous chapters we analyzed data from so-called one-way experimental designs, in which subjects
were randomly assigned to groups that di↵ered on a single treatment or grouping variable. In this
chapter we will analyze data from factorial experiments. Factorial experiments contain two or
more experimental variables. In a completely crossed factorial experiment, each level of every variable
is combined with each level of every other variable. So, if there are two variables with a and b levels,
then there will be ab combinations of treatments, which are sometimes called cells. Subjects are then
assigned randomly to the various combinations of treatments. Experiments that have equal n per
cell are called balanced designs. Designs with unequal n are unbalanced. We will start by analyzing
data from balanced designs, and then consider unbalanced data near the end of this chapter.

Our analyses will focus on factorial experiments with two experimental factors, A and B. (Higher-
order factorial designs are examined in chapter 8.) The design of a factorial experiment that has two
variables can be represented as a two-dimensional table, with the rows representing di↵erent levels
of variable A and the columns representing di↵erent levels of variable B. Each cell within the table
corresponds to a particular combination of treatments. For example, a1b3, which is the cell in row 1
and column 3, refers to the combination of level 1 of A and level 3 in B. I will often use the terms
“cell” or group to refer to a particular combination of treatments. Cell jk refers to the cell in row j
and column k.

7.1 Linear Model

The linear model for data collected in a two factor factorial experiment can be expressed as

Yijk = µ+ ↵j + �k + (↵�)jk + ✏ijk (1)

where Yijk is the score of individual i in cell jk, µ is a constant, ↵j is the e↵ect of treatment aj, �k is
the e↵ect of bk, (↵�)jk is the e↵ect of the combination ajbk, and ✏ijk is the error term. Notice that ↵j

is the e↵ect of a particular level of A without reference to B. In other words, ↵j represents the e↵ect
of being in row aj regardless of the level of B. Similarly, �k represents the e↵ect of being in column
bk regardless of the level of A. As we shall see, the ↵’s and �’s constitute the main e↵ects of A
and B, respectively. The e↵ect (↵�)jk, on the other hand, refers to the e↵ect of begin in a particular
cell, and collectively (i.e., across all cells) constitute the interaction between A and B, which often
is represented as A⇥ B. Interactions are discussed in more detail in section 7.4.1.

The main e↵ects are defined as

↵j = µj. � µ.. (2)

�k = µ.k � µ.. (3)

1
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A3 A3B1 A3B2 A3B3

A4 A4B1 A4B2 A4B3

main 
effects interaction

intercept residual

subject i, row j, column k

Main Effect of A

Bennett, PJ PSY710 Chapter 7

Notes on Maxwell & Delaney

PSY710

7 Factorial Designs

In previous chapters we analyzed data from so-called one-way experimental designs, in which subjects
were randomly assigned to groups that di↵ered on a single treatment or grouping variable. In this
chapter we will analyze data from factorial experiments. Factorial experiments contain two or
more experimental variables. In a completely crossed factorial experiment, each level of every variable
is combined with each level of every other variable. So, if there are two variables with a and b levels,
then there will be ab combinations of treatments, which are sometimes called cells. Subjects are then
assigned randomly to the various combinations of treatments. Experiments that have equal n per
cell are called balanced designs. Designs with unequal n are unbalanced. We will start by analyzing
data from balanced designs, and then consider unbalanced data near the end of this chapter.

Our analyses will focus on factorial experiments with two experimental factors, A and B. (Higher-
order factorial designs are examined in chapter 8.) The design of a factorial experiment that has two
variables can be represented as a two-dimensional table, with the rows representing di↵erent levels
of variable A and the columns representing di↵erent levels of variable B. Each cell within the table
corresponds to a particular combination of treatments. For example, a1b3, which is the cell in row 1
and column 3, refers to the combination of level 1 of A and level 3 in B. I will often use the terms
“cell” or group to refer to a particular combination of treatments. Cell jk refers to the cell in row j
and column k.

7.1 Linear Model

The linear model for data collected in a two factor factorial experiment can be expressed as

Yijk = µ+ ↵j + �k + (↵�)jk + ✏ijk (1)

where Yijk is the score of individual i in cell jk, µ is a constant, ↵j is the e↵ect of treatment aj, �k is
the e↵ect of bk, (↵�)jk is the e↵ect of the combination ajbk, and ✏ijk is the error term. Notice that ↵j

is the e↵ect of a particular level of A without reference to B. In other words, ↵j represents the e↵ect
of being in row aj regardless of the level of B. Similarly, �k represents the e↵ect of being in column
bk regardless of the level of A. As we shall see, the ↵’s and �’s constitute the main e↵ects of A
and B, respectively. The e↵ect (↵�)jk, on the other hand, refers to the e↵ect of begin in a particular
cell, and collectively (i.e., across all cells) constitute the interaction between A and B, which often
is represented as A⇥ B. Interactions are discussed in more detail in section 7.4.1.

The main e↵ects are defined as

↵j = µj. � µ.. (2)

�k = µ.k � µ.. (3)

1

Bennett, PJ PSY710 Chapter 7

Notes on Maxwell & Delaney

PSY710

7 Factorial Designs

In previous chapters we analyzed data from so-called one-way experimental designs, in which subjects
were randomly assigned to groups that di↵ered on a single treatment or grouping variable. In this
chapter we will analyze data from factorial experiments. Factorial experiments contain two or
more experimental variables. In a completely crossed factorial experiment, each level of every variable
is combined with each level of every other variable. So, if there are two variables with a and b levels,
then there will be ab combinations of treatments, which are sometimes called cells. Subjects are then
assigned randomly to the various combinations of treatments. Experiments that have equal n per
cell are called balanced designs. Designs with unequal n are unbalanced. We will start by analyzing
data from balanced designs, and then consider unbalanced data near the end of this chapter.

Our analyses will focus on factorial experiments with two experimental factors, A and B. (Higher-
order factorial designs are examined in chapter 8.) The design of a factorial experiment that has two
variables can be represented as a two-dimensional table, with the rows representing di↵erent levels
of variable A and the columns representing di↵erent levels of variable B. Each cell within the table
corresponds to a particular combination of treatments. For example, a1b3, which is the cell in row 1
and column 3, refers to the combination of level 1 of A and level 3 in B. I will often use the terms
“cell” or group to refer to a particular combination of treatments. Cell jk refers to the cell in row j
and column k.

7.1 Linear Model

The linear model for data collected in a two factor factorial experiment can be expressed as

Yijk = µ+ ↵j + �k + (↵�)jk + ✏ijk (1)

where Yijk is the score of individual i in cell jk, µ is a constant, ↵j is the e↵ect of treatment aj, �k is
the e↵ect of bk, (↵�)jk is the e↵ect of the combination ajbk, and ✏ijk is the error term. Notice that ↵j

is the e↵ect of a particular level of A without reference to B. In other words, ↵j represents the e↵ect
of being in row aj regardless of the level of B. Similarly, �k represents the e↵ect of being in column
bk regardless of the level of A. As we shall see, the ↵’s and �’s constitute the main e↵ects of A
and B, respectively. The e↵ect (↵�)jk, on the other hand, refers to the e↵ect of begin in a particular
cell, and collectively (i.e., across all cells) constitute the interaction between A and B, which often
is represented as A⇥ B. Interactions are discussed in more detail in section 7.4.1.

The main e↵ects are defined as

↵j = µj. � µ.. (2)

�k = µ.k � µ.. (3)

1

μ.. = grand mean (all scores)
μj. = marginal row mean [average of cell means in row j ]
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where µj. is the marginal mean in row j, µ.k is the marginal mean in column k, and µ.. is the population
grand mean (i.e., the mean of the row and column marginal means). There is one coe�cient for each
row and column, and the e↵ects are constrained so that they sum to zero:

aX

j=1

↵j = 0 (4)

bX

k=1

�k = 0 (5)

(6)

The marginal row and column means are defined as

µj. =
bX

k=1

µjk/b (7)

µ.k =
aX

j=1

µjk/a (8)

which are estimated from our sample as

Ȳj. =
bX

k=1

Ȳjk/b (9)

Ȳ.k =
aX

j=1

Ȳjk/a (10)

For balanced designs, the formulae for marginal means can be rewritten as

Ȳj. =

 
bX

k=1

nX

i=1

Yijk

!
/nb (11)

Ȳ.k =

 
aX

j=1

nX

i=1

Yijk

!
/na (12)

Note that the marginal row means are the means calculated from all the scores in each row. Similarly,
the column marginal means are the means obtained from all of the scores in column. Hence, the row
marginal means ignore the column e↵ects, and the column marginal means ignore the row e↵ects.

The interaction terms are defined as

(↵�)jk = µjk � (µ.. + ↵j + �k) (13)

which represents the di↵erence between the cell mean, µjk, and the sum of the grand mean (µ..)
and the row and column main e↵ects. There is one interaction coe�cient for each cell. Finally, the
interaction terms in each row and each column sum to zero:

aX

j=1

(↵�)jk = 0 for each value of k (14)

bX

k=1

(↵�)jk = 0 for each value of j (15)

2

Factor B

B1 B2 B3

Factor A

A1 A1B1 A1B2 A1B3

A2 A2B1 A2B2 A2B3

A3 A3B1 A3B2 A3B3

A4 A4B1 A4B2 A4B3

M
arginal Row

 M
eans
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aX

j=1

(↵�)jk = 0 for each value of k (14)

bX

k=1

(↵�)jk = 0 for each value of j (15)

2

µ̂.k = Ȳ.k
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One interaction effect per cell
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where µj. is the marginal mean in row j, µ.k is the marginal mean in column k, and µ.. is the population
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(6)

The marginal row and column means are defined as

µj. =
bX

k=1

µjk/b (7)
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j=1

µjk/a (8)

which are estimated from our sample as

Ȳj. =
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k=1
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Ȳjk/a (10)
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!
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!
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Note that the marginal row means are the means calculated from all the scores in each row. Similarly,
the column marginal means are the means obtained from all of the scores in column. Hence, the row
marginal means ignore the column e↵ects, and the column marginal means ignore the row e↵ects.

The interaction terms are defined as

(↵�)jk = µjk � (µ.. + ↵j + �k) (13)

which represents the di↵erence between the cell mean, µjk, and the sum of the grand mean (µ..)
and the row and column main e↵ects. There is one interaction coe�cient for each cell. Finally, the
interaction terms in each row and each column sum to zero:

aX

j=1

(↵�)jk = 0 for each value of k (14)

bX

k=1

(↵�)jk = 0 for each value of j (15)

2
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aX
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(↵�)jk = 0 for each value of k (14)

bX
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2i.e., interaction is what is left over after 
accounting for 2 main effects

dfAxB = (a-1)(b-1) = dfA x dfB

Least-squares Estimates of ParametersBennett, PJ PSY710 Chapter 7

The least squares estimates of the coe�cients are

↵j = Ȳj. � Ȳ..

�k = Ȳ.k � Ȳ..

(↵�)jk = Ȳjk � (Ȳ.. + (Ȳj. � Ȳ..) + (Ȳ.k � Ȳ..))

= Ȳjk � Ȳj. � Ȳ.k + Ȳ..

The main e↵ects have (a� 1) and (b� 1) degrees of freedom, the interaction has (a� 1)⇥ (b� 1)
degrees of freedom, and the model in Equation 1 has 1+(a�1)+(b�1)+(a�1)(b�1) parameters.

7.1.1 simple interpretation of linear model

If one cuts through the mathematical notation, the model defined by Equation 1 has a very simple
interpretation. In our discussion of the linear model for one-way designs, we noted that the sum of
the intercept and group e↵ects constituted a predicted score for individual i in group j (i.e., Ŷij). We
can extend this idea to our two-way factorial design:

Yijk = Ŷijk + ✏ijk (16)

where Ŷijk is the predicted score. Equation 16 says that the score of individual i in cell jk is the sum
of a predicted score and an error (or residual) term. Now, the predicted score is defined as the sum
of the e↵ects in the model:

Ŷijk = µ+ ↵j + �k + (↵�)jk

It turns out that the sum of the e↵ects equals the mean of the scores in cell ij. In other words,
Ŷijk = Ȳij. Ȳij is an estimate of µij, so the model can be re-written as

Yijk = Ŷijk + ✏ijk = µij + ✏ijk

So, Equation 1 is equivalent to saying that the observed score is equal to the sum of the cell mean
and an error term, but it describes the cell mean as a sum of three separate e↵ects.

7.2 main e↵ect of A

Generally, the linear model in Equation 1 is used to evaluate three null hypotheses corresponding to
the two main e↵ects and the A⇥ B interaction. The null hypothesis for the main e↵ect of A is

↵1 = ↵2 = · · · = ↵a = 0 (17)

which is equivalent to
Ȳ1. = Ȳ2. = · · · = Ȳj. (18)

A significant main e↵ect of A means that the row marginal means — i.e., the average of scores within
a row and across all levels of B — are not all equal

Your book points out that the sum of squares for factor A, or SSA, can be obtained by calculating
the di↵erence between SSResidual obtained with the restricted model
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7 Factorial Designs

In previous chapters we analyzed data from so-called one-way experimental designs, in which subjects
were randomly assigned to groups that di↵ered on a single treatment or grouping variable. In this
chapter we will analyze data from factorial experiments. Factorial experiments contain two or
more experimental variables. In a completely crossed factorial experiment, each level of every variable
is combined with each level of every other variable. So, if there are two variables with a and b levels,
then there will be ab combinations of treatments, which are sometimes called cells. Subjects are then
assigned randomly to the various combinations of treatments. Experiments that have equal n per
cell are called balanced designs. Designs with unequal n are unbalanced. We will start by analyzing
data from balanced designs, and then consider unbalanced data near the end of this chapter.

Our analyses will focus on factorial experiments with two experimental factors, A and B. (Higher-
order factorial designs are examined in chapter 8.) The design of a factorial experiment that has two
variables can be represented as a two-dimensional table, with the rows representing di↵erent levels
of variable A and the columns representing di↵erent levels of variable B. Each cell within the table
corresponds to a particular combination of treatments. For example, a1b3, which is the cell in row 1
and column 3, refers to the combination of level 1 of A and level 3 in B. I will often use the terms
“cell” or group to refer to a particular combination of treatments. Cell jk refers to the cell in row j
and column k.

7.1 Linear Model

The linear model for data collected in a two factor factorial experiment can be expressed as

Yijk = µ+ ↵j + �k + (↵�)jk + ✏ijk (1)

where Yijk is the score of individual i in cell jk, µ is a constant, ↵j is the e↵ect of treatment aj, �k is
the e↵ect of bk, (↵�)jk is the e↵ect of the combination ajbk, and ✏ijk is the error term. Notice that ↵j

is the e↵ect of a particular level of A without reference to B. In other words, ↵j represents the e↵ect
of being in row aj regardless of the level of B. Similarly, �k represents the e↵ect of being in column
bk regardless of the level of A. As we shall see, the ↵’s and �’s constitute the main e↵ects of A
and B, respectively. The e↵ect (↵�)jk, on the other hand, refers to the e↵ect of begin in a particular
cell, and collectively (i.e., across all cells) constitute the interaction between A and B, which often
is represented as A⇥ B. Interactions are discussed in more detail in section 7.4.1.

The main e↵ects are defined as

↵j = µj. � µ.. (2)

�k = µ.k � µ.. (3)

1

Ȳjk − Ȳ.. − α̂j. − ̂β.k
i.e., what is left over after 

accounting for 2 main effects

Interpretation of Model
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bk regardless of the level of A. As we shall see, the ↵’s and �’s constitute the main e↵ects of A
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1

model has 1 + (a-1) + (b-1) + (a-1)(b-1) free parameters, or one for each cell mean
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The least squares estimates of the coe�cients are

↵j = Ȳj. � Ȳ..

�k = Ȳ.k � Ȳ..

(↵�)jk = Ȳjk � (Ȳ.. + (Ȳj. � Ȳ..) + (Ȳ.k � Ȳ..))

= Ȳjk � Ȳj. � Ȳ.k + Ȳ..

The main e↵ects have (a� 1) and (b� 1) degrees of freedom, the interaction has (a� 1)⇥ (b� 1)
degrees of freedom, and the model in Equation 1 has 1+(a�1)+(b�1)+(a�1)(b�1) parameters.

7.1.1 simple interpretation of linear model

If one cuts through the mathematical notation, the model defined by Equation 1 has a very simple
interpretation. In our discussion of the linear model for one-way designs, we noted that the sum of
the intercept and group e↵ects constituted a predicted score for individual i in group j (i.e., Ŷij). We
can extend this idea to our two-way factorial design:

Yijk = Ŷijk + ✏ijk (16)

where Ŷijk is the predicted score. Equation 16 says that the score of individual i in cell jk is the sum
of a predicted score and an error (or residual) term. Now, the predicted score is defined as the sum
of the e↵ects in the model:

Ŷijk = µ+ ↵j + �k + (↵�)jk

It turns out that the sum of the e↵ects equals the mean of the scores in cell ij. In other words,
Ŷijk = Ȳij. Ȳij is an estimate of µij, so the model can be re-written as

Yijk = Ŷijk + ✏ijk = µij + ✏ijk

So, Equation 1 is equivalent to saying that the observed score is equal to the sum of the cell mean
and an error term, but it describes the cell mean as a sum of three separate e↵ects.

7.2 main e↵ect of A

Generally, the linear model in Equation 1 is used to evaluate three null hypotheses corresponding to
the two main e↵ects and the A⇥ B interaction. The null hypothesis for the main e↵ect of A is

↵1 = ↵2 = · · · = ↵a = 0 (17)

which is equivalent to
Ȳ1. = Ȳ2. = · · · = Ȳj. (18)

A significant main e↵ect of A means that the row marginal means — i.e., the average of scores within
a row and across all levels of B — are not all equal

Your book points out that the sum of squares for factor A, or SSA, can be obtained by calculating
the di↵erence between SSResidual obtained with the restricted model

Yijk = µ+ �k + (↵�)jk + ✏ijk (19)

3

observed score = predicted score + residual
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3

predicted score = sum of intercept, main effects, and 
interaction

Ŷijk = Ȳij predicted score = cell mean

observed score = cell mean + residualYijk = Ȳij + ✏ijk

anova breaks variation among cell means into 3 independent components:  
variation due to A, variation due to B, and variation due to AxB



Evaluating Main Effect of A
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7 Factorial Designs

In previous chapters we analyzed data from so-called one-way experimental designs, in which subjects
were randomly assigned to groups that di↵ered on a single treatment or grouping variable. In this
chapter we will analyze data from factorial experiments. Factorial experiments contain two or
more experimental variables. In a completely crossed factorial experiment, each level of every variable
is combined with each level of every other variable. So, if there are two variables with a and b levels,
then there will be ab combinations of treatments, which are sometimes called cells. Subjects are then
assigned randomly to the various combinations of treatments. Experiments that have equal n per
cell are called balanced designs. Designs with unequal n are unbalanced. We will start by analyzing
data from balanced designs, and then consider unbalanced data near the end of this chapter.

Our analyses will focus on factorial experiments with two experimental factors, A and B. (Higher-
order factorial designs are examined in chapter 8.) The design of a factorial experiment that has two
variables can be represented as a two-dimensional table, with the rows representing di↵erent levels
of variable A and the columns representing di↵erent levels of variable B. Each cell within the table
corresponds to a particular combination of treatments. For example, a1b3, which is the cell in row 1
and column 3, refers to the combination of level 1 of A and level 3 in B. I will often use the terms
“cell” or group to refer to a particular combination of treatments. Cell jk refers to the cell in row j
and column k.

7.1 Linear Model

The linear model for data collected in a two factor factorial experiment can be expressed as

Yijk = µ+ ↵j + �k + (↵�)jk + ✏ijk (1)

where Yijk is the score of individual i in cell jk, µ is a constant, ↵j is the e↵ect of treatment aj, �k is
the e↵ect of bk, (↵�)jk is the e↵ect of the combination ajbk, and ✏ijk is the error term. Notice that ↵j

is the e↵ect of a particular level of A without reference to B. In other words, ↵j represents the e↵ect
of being in row aj regardless of the level of B. Similarly, �k represents the e↵ect of being in column
bk regardless of the level of A. As we shall see, the ↵’s and �’s constitute the main e↵ects of A
and B, respectively. The e↵ect (↵�)jk, on the other hand, refers to the e↵ect of begin in a particular
cell, and collectively (i.e., across all cells) constitute the interaction between A and B, which often
is represented as A⇥ B. Interactions are discussed in more detail in section 7.4.1.

The main e↵ects are defined as

↵j = µj. � µ.. (2)

�k = µ.k � µ.. (3)

1
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The main e↵ects have (a� 1) and (b� 1) degrees of freedom, the interaction has (a� 1)⇥ (b� 1)
degrees of freedom, and the model in Equation 1 has 1+(a�1)+(b�1)+(a�1)(b�1) parameters.

7.1.1 simple interpretation of linear model

If one cuts through the mathematical notation, the model defined by Equation 1 has a very simple
interpretation. In our discussion of the linear model for one-way designs, we noted that the sum of
the intercept and group e↵ects constituted a predicted score for individual i in group j (i.e., Ŷij). We
can extend this idea to our two-way factorial design:

Yijk = Ŷijk + ✏ijk (16)

where Ŷijk is the predicted score. Equation 16 says that the score of individual i in cell jk is the sum
of a predicted score and an error (or residual) term. Now, the predicted score is defined as the sum
of the e↵ects in the model:

Ŷijk = µ+ ↵j + �k + (↵�)jk

It turns out that the sum of the e↵ects equals the mean of the scores in cell ij. In other words,
Ŷijk = Ȳij. Ȳij is an estimate of µij, so the model can be re-written as

Yijk = Ŷijk + ✏ijk = µij + ✏ijk

So, Equation 1 is equivalent to saying that the observed score is equal to the sum of the cell mean
and an error term, but it describes the cell mean as a sum of three separate e↵ects.

7.2 main e↵ect of A

Generally, the linear model in Equation 1 is used to evaluate three null hypotheses corresponding to
the two main e↵ects and the A⇥ B interaction. The null hypothesis for the main e↵ect of A is

↵1 = ↵2 = · · · = ↵a = 0 (17)

which is equivalent to
Ȳ1. = Ȳ2. = · · · = Ȳj. (18)

A significant main e↵ect of A means that the row marginal means — i.e., the average of scores within
a row and across all levels of B — are not all equal

Your book points out that the sum of squares for factor A, or SSA, can be obtained by calculating
the di↵erence between SSResidual obtained with the restricted model

Yijk = µ+ �k + (↵�)jk + ✏ijk (19)
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�k = Ȳ.k � Ȳ..
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where Ŷijk is the predicted score. Equation 16 says that the score of individual i in cell jk is the sum
of a predicted score and an error (or residual) term. Now, the predicted score is defined as the sum
of the e↵ects in the model:
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Ŷijk = Ȳij. Ȳij is an estimate of µij, so the model can be re-written as
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So, Equation 1 is equivalent to saying that the observed score is equal to the sum of the cell mean
and an error term, but it describes the cell mean as a sum of three separate e↵ects.

7.2 main e↵ect of A

Generally, the linear model in Equation 1 is used to evaluate three null hypotheses corresponding to
the two main e↵ects and the A⇥ B interaction. The null hypothesis for the main e↵ect of A is

↵1 = ↵2 = · · · = ↵a = 0 (17)

which is equivalent to
Ȳ1. = Ȳ2. = · · · = Ȳj. (18)

A significant main e↵ect of A means that the row marginal means — i.e., the average of scores within
a row and across all levels of B — are not all equal

Your book points out that the sum of squares for factor A, or SSA, can be obtained by calculating
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Yijk = µ+ �k + (↵�)jk + ✏ijk (19)

3

Nested Models

SSA is change in SSresiduals that occurs when all alphas are set to zero. 
For balanced designs, SSA is the same in all cases.
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to SSResidual obtained with the full model (i.e. Equation 1). The model in Equation 19 includes the
A⇥B interaction but not the main e↵ect of A, and therefore violates the principle of marginality.1

One undesirable feature of such models is that SSA depends crucially on the definition of ↵. Our
definition of an e↵ect is given by Equation 2, but other definitions are possible. For example, we
could define e↵ect ↵j as the di↵erence between the marginal mean of row j and the marginal row
mean of a baseline group (e.g., j = 1), giving ↵j = Ȳj � Ȳ1. This definition of an e↵ect, which is
sometimes called treatment coding, or reference-cell coding (see Appendix B in your textbook), is
entirely reasonable. Ideally, we would not want our results to depend on arbitrary definitions of an
e↵ect. Unfortunately, in some situations, the SSA derived from a comparison of Equations 1 and 19
does depend on our definition of ↵. This is one reason why some statisticians argue strongly against
the use of models that violate the marginality principle (Venables and Ripley, 2002). In any case, it
is important that you realize that comparison of Equations 1 and 19 yields SSA only when ↵’s are
defined as in Equation 2.

Are there other model comparisons that can be used to evaluate the null hypothesis in Equation
17? The answer is, yes. For example we can compare the fits provided by the models

Yijk = µ+ ✏ijk (20)

Yijk = µ+ ↵j + ✏ijk (21)

Alternatively, we can compare the following two models

Yijk = µ+ �k + ✏ijk (22)

Yijk = µ+ ↵j + �k + ✏ijk (23)

Notice that both comparisons involve models that di↵er only in the presence or absence of ↵ coe�-
cients, and so therefore should provide estimates of SSA. In fact, comparisons of models 1 and 19,
20 and 21, and 22 and 23 yield identical values for SSA provided that there are equal n per

group and we use sum-to-zero coding.

7.2.1 calculating F

The null hypothesis (Equation 17) is evaluated by comparing SSA to sum of squared residuals
(SSResiduals) for the full model (i.e., Eq. 1). It can be shown that

SSA = ER � EF =
aX

j=1

nX

i=1

↵2
j (24)

The sum of squared residuals is

SSResiduals = EF =
aX

j=1

bX

k=1

nX

i=1

(Yijk � Ȳjk)
2 (25)

Finally, the F test for the main e↵ect of A is

FA =
SSA/(a� 1)

SSResiduals/(ab(n� 1))
(26)

with numerator and denominator degrees of freedom of (a� 1) and ab(n� 1), respectively.

1In a quadratic model that contains linear (x) and quadratic (x2) terms, the linear term is said to be marginal to
the quadratic term. In the case of factors, a main e↵ect, A, is said to be marginal to interactions that contain it (e.g.,
A⇥B, A⇥B⇥C, etc.). According to the principle of marginality, if a model contains a higher-order term (e.g., AB),
then it must also contain the terms marginal to it (e.g., A and B).
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full model (ignores B and AxB)

reduced model
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full model (ignores AxB)

reduced model

[violates principle of marginality. Bad!]

Marginality
• lower-order effects are marginal to higher-order effects 
- main effects are marginal to 2-way their interactions 
- 2-way interactions are marginal to their 3-way interactions 
- linear predictors (x) are marginal to quadratic & cubic predictors (e.g., x2, x3) 

• principle of marginality: linear models that include higher-order effects/
predictors should not exclude the effects that are marginal to them 
- if a model includes A x B it should also include A and B 
- if a model includes x2 it should also include x 

• why? Because, in general, models that violate marginality are not invariant to 
changes in measurement units 
- http://pnb.mcmaster.ca/bennett/psy710/notes/mw7-marginality-example.html

Marginality 
http://pnb.mcmaster.ca/bennett/psy710/notes/mw7-marginality-example.html

lm01 <- lm( y ~1+x+I(x^2) ) lm02 <- lm( y ~1+a+I(a^2) )
a <- 4 + 0.5*x

ANOVAs are identical

both marginals obey marginality principle

http://pnb.mcmaster.ca/bennett/psy710/notes/mw7-marginality-example.html
http://pnb.mcmaster.ca/bennett/psy710/notes/mw7-marginality-example.html


Marginality 
http://pnb.mcmaster.ca/bennett/psy710/notes/mw7-marginality-example.html

lm01 <- lm( y ~1+I(x^2) ) lm02 <- lm( y ~1+I(a^2) )
a <- 4 + 0.5*x

ANOVAs are NOT identical

both marginals violate marginality principle

Evaluating Main Effect of A

Bennett, PJ PSY710 Chapter 7

to SSResidual obtained with the full model (i.e. Equation 1). The model in Equation 19 includes the
A⇥B interaction but not the main e↵ect of A, and therefore violates the principle of marginality.1

One undesirable feature of such models is that SSA depends crucially on the definition of ↵. Our
definition of an e↵ect is given by Equation 2, but other definitions are possible. For example, we
could define e↵ect ↵j as the di↵erence between the marginal mean of row j and the marginal row
mean of a baseline group (e.g., j = 1), giving ↵j = Ȳj � Ȳ1. This definition of an e↵ect, which is
sometimes called treatment coding, or reference-cell coding (see Appendix B in your textbook), is
entirely reasonable. Ideally, we would not want our results to depend on arbitrary definitions of an
e↵ect. Unfortunately, in some situations, the SSA derived from a comparison of Equations 1 and 19
does depend on our definition of ↵. This is one reason why some statisticians argue strongly against
the use of models that violate the marginality principle (Venables and Ripley, 2002). In any case, it
is important that you realize that comparison of Equations 1 and 19 yields SSA only when ↵’s are
defined as in Equation 2.

Are there other model comparisons that can be used to evaluate the null hypothesis in Equation
17? The answer is, yes. For example we can compare the fits provided by the models

Yijk = µ+ ✏ijk (20)

Yijk = µ+ ↵j + ✏ijk (21)

Alternatively, we can compare the following two models

Yijk = µ+ �k + ✏ijk (22)

Yijk = µ+ ↵j + �k + ✏ijk (23)

Notice that both comparisons involve models that di↵er only in the presence or absence of ↵ coe�-
cients, and so therefore should provide estimates of SSA. In fact, comparisons of models 1 and 19,
20 and 21, and 22 and 23 yield identical values for SSA provided that there are equal n per

group and we use sum-to-zero coding.

7.2.1 calculating F

The null hypothesis (Equation 17) is evaluated by comparing SSA to sum of squared residuals
(SSResiduals) for the full model (i.e., Eq. 1). It can be shown that

SSA = ER � EF =
aX

j=1

nX

i=1

↵2
j (24)

The sum of squared residuals is

SSResiduals = EF =
aX

j=1

bX

k=1

nX

i=1

(Yijk � Ȳjk)
2 (25)

Finally, the F test for the main e↵ect of A is

FA =
SSA/(a� 1)

SSResiduals/(ab(n� 1))
(26)

with numerator and denominator degrees of freedom of (a� 1) and ab(n� 1), respectively.

1In a quadratic model that contains linear (x) and quadratic (x2) terms, the linear term is said to be marginal to
the quadratic term. In the case of factors, a main e↵ect, A, is said to be marginal to interactions that contain it (e.g.,
A⇥B, A⇥B⇥C, etc.). According to the principle of marginality, if a model contains a higher-order term (e.g., AB),
then it must also contain the terms marginal to it (e.g., A and B).
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The least squares estimates of the coe�cients are

↵j = Ȳj. � Ȳ..

�k = Ȳ.k � Ȳ..

(↵�)jk = Ȳjk � (Ȳ.. + (Ȳj. � Ȳ..) + (Ȳ.k � Ȳ..))

= Ȳjk � Ȳj. � Ȳ.k + Ȳ..

The main e↵ects have (a� 1) and (b� 1) degrees of freedom, the interaction has (a� 1)⇥ (b� 1)
degrees of freedom, and the model in Equation 1 has 1+(a�1)+(b�1)+(a�1)(b�1) parameters.

7.1.1 simple interpretation of linear model

If one cuts through the mathematical notation, the model defined by Equation 1 has a very simple
interpretation. In our discussion of the linear model for one-way designs, we noted that the sum of
the intercept and group e↵ects constituted a predicted score for individual i in group j (i.e., Ŷij). We
can extend this idea to our two-way factorial design:

Yijk = Ŷijk + ✏ijk (16)

where Ŷijk is the predicted score. Equation 16 says that the score of individual i in cell jk is the sum
of a predicted score and an error (or residual) term. Now, the predicted score is defined as the sum
of the e↵ects in the model:

Ŷijk = µ+ ↵j + �k + (↵�)jk

It turns out that the sum of the e↵ects equals the mean of the scores in cell ij. In other words,
Ŷijk = Ȳij. Ȳij is an estimate of µij, so the model can be re-written as

Yijk = Ŷijk + ✏ijk = µij + ✏ijk

So, Equation 1 is equivalent to saying that the observed score is equal to the sum of the cell mean
and an error term, but it describes the cell mean as a sum of three separate e↵ects.

7.2 main e↵ect of A

Generally, the linear model in Equation 1 is used to evaluate three null hypotheses corresponding to
the two main e↵ects and the A⇥ B interaction. The null hypothesis for the main e↵ect of A is

↵1 = ↵2 = · · · = ↵a = 0 (17)

which is equivalent to
Ȳ1. = Ȳ2. = · · · = Ȳj. (18)

A significant main e↵ect of A means that the row marginal means — i.e., the average of scores within
a row and across all levels of B — are not all equal

Your book points out that the sum of squares for factor A, or SSA, can be obtained by calculating
the di↵erence between SSResidual obtained with the restricted model

Yijk = µ+ �k + (↵�)jk + ✏ijk (19)
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can extend this idea to our two-way factorial design:
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So, Equation 1 is equivalent to saying that the observed score is equal to the sum of the cell mean
and an error term, but it describes the cell mean as a sum of three separate e↵ects.
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Generally, the linear model in Equation 1 is used to evaluate three null hypotheses corresponding to
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↵1 = ↵2 = · · · = ↵a = 0 (17)

which is equivalent to
Ȳ1. = Ȳ2. = · · · = Ȳj. (18)
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FA = MSA ÷ MSresiduals

Calculating Sum-of-Squares B (SSB)

full model

reduced model
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7 Factorial Designs

In previous chapters we analyzed data from so-called one-way experimental designs, in which subjects
were randomly assigned to groups that di↵ered on a single treatment or grouping variable. In this
chapter we will analyze data from factorial experiments. Factorial experiments contain two or
more experimental variables. In a completely crossed factorial experiment, each level of every variable
is combined with each level of every other variable. So, if there are two variables with a and b levels,
then there will be ab combinations of treatments, which are sometimes called cells. Subjects are then
assigned randomly to the various combinations of treatments. Experiments that have equal n per
cell are called balanced designs. Designs with unequal n are unbalanced. We will start by analyzing
data from balanced designs, and then consider unbalanced data near the end of this chapter.

Our analyses will focus on factorial experiments with two experimental factors, A and B. (Higher-
order factorial designs are examined in chapter 8.) The design of a factorial experiment that has two
variables can be represented as a two-dimensional table, with the rows representing di↵erent levels
of variable A and the columns representing di↵erent levels of variable B. Each cell within the table
corresponds to a particular combination of treatments. For example, a1b3, which is the cell in row 1
and column 3, refers to the combination of level 1 of A and level 3 in B. I will often use the terms
“cell” or group to refer to a particular combination of treatments. Cell jk refers to the cell in row j
and column k.

7.1 Linear Model

The linear model for data collected in a two factor factorial experiment can be expressed as

Yijk = µ+ ↵j + �k + (↵�)jk + ✏ijk (1)

where Yijk is the score of individual i in cell jk, µ is a constant, ↵j is the e↵ect of treatment aj, �k is
the e↵ect of bk, (↵�)jk is the e↵ect of the combination ajbk, and ✏ijk is the error term. Notice that ↵j

is the e↵ect of a particular level of A without reference to B. In other words, ↵j represents the e↵ect
of being in row aj regardless of the level of B. Similarly, �k represents the e↵ect of being in column
bk regardless of the level of A. As we shall see, the ↵’s and �’s constitute the main e↵ects of A
and B, respectively. The e↵ect (↵�)jk, on the other hand, refers to the e↵ect of begin in a particular
cell, and collectively (i.e., across all cells) constitute the interaction between A and B, which often
is represented as A⇥ B. Interactions are discussed in more detail in section 7.4.1.

The main e↵ects are defined as

↵j = µj. � µ.. (2)

�k = µ.k � µ.. (3)

1

Nested Models

SSB is change in SSresiduals that occurs when all betas are set to zero. 
For balanced designs, SSB is the same in all cases.

full model (ignores A and AxB)

reduced model

full model (ignores AxB)

reduced model

[violates principle of marginality. Bad!]
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7.3 main e↵ect of B

The null hypothesis for the main e↵ect of B is

�.1 = �2. = · · · = �.b = 0 (27)

which is equivalent to
Ȳ.1 = Ȳ.2 = · · · = Ȳ.b = 0 (28)

A significant main e↵ect of B means that the column marginal means — i.e., the average of scores
within a column and across all levels of A — are not all equal

The null hypothesis can be evaluated by comparing the sum of squared residuals from the full
model (i.e., Equation 1) to the sum of squared residuals for the restricted model

Yijk = µ+ ↵j + (↵�)jk + ✏ijk (29)

Alternatively, we could compare

Yijk = µ+ ✏ijk (30)

Yijk = µ+ �k + ✏ijk (31)

or

Yijk = µ+ ↵j + ✏ijk (32)

Yijk = µ+ ↵j + �k + ✏ijk (33)

All of the comments made about the various comparisons that can be done to calculate SSA also
apply to calculations of SSB. It can be shown that

SSB =
bX

k=1

nX

i=1

�2
k (34)

The F test for the main e↵ect of B is

FB =
SSB/(b� 1)

SSResidual/(ab(n� 1))
(35)

with numerator and denominator degrees of freedom of (b� 1) and ab(n� 1), respectively.

7.4 A⇥ B interaction

The null hypothesis for the AB interaction is

(↵�)11 = (↵�)12 = · · · = (↵�)ab = 0 (36)

A significant A⇥B interaction means that the at least one cell mean, Ȳjk, di↵ers from the predicted
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to SSResidual obtained with the full model (i.e. Equation 1). The model in Equation 19 includes the
A⇥B interaction but not the main e↵ect of A, and therefore violates the principle of marginality.1

One undesirable feature of such models is that SSA depends crucially on the definition of ↵. Our
definition of an e↵ect is given by Equation 2, but other definitions are possible. For example, we
could define e↵ect ↵j as the di↵erence between the marginal mean of row j and the marginal row
mean of a baseline group (e.g., j = 1), giving ↵j = Ȳj � Ȳ1. This definition of an e↵ect, which is
sometimes called treatment coding, or reference-cell coding (see Appendix B in your textbook), is
entirely reasonable. Ideally, we would not want our results to depend on arbitrary definitions of an
e↵ect. Unfortunately, in some situations, the SSA derived from a comparison of Equations 1 and 19
does depend on our definition of ↵. This is one reason why some statisticians argue strongly against
the use of models that violate the marginality principle (Venables and Ripley, 2002). In any case, it
is important that you realize that comparison of Equations 1 and 19 yields SSA only when ↵’s are
defined as in Equation 2.

Are there other model comparisons that can be used to evaluate the null hypothesis in Equation
17? The answer is, yes. For example we can compare the fits provided by the models

Yijk = µ+ ✏ijk (20)

Yijk = µ+ ↵j + ✏ijk (21)

Alternatively, we can compare the following two models

Yijk = µ+ �k + ✏ijk (22)

Yijk = µ+ ↵j + �k + ✏ijk (23)

Notice that both comparisons involve models that di↵er only in the presence or absence of ↵ coe�-
cients, and so therefore should provide estimates of SSA. In fact, comparisons of models 1 and 19,
20 and 21, and 22 and 23 yield identical values for SSA provided that there are equal n per

group and we use sum-to-zero coding.

7.2.1 calculating F

The null hypothesis (Equation 17) is evaluated by comparing SSA to sum of squared residuals
(SSResiduals) for the full model (i.e., Eq. 1). It can be shown that

SSA = ER � EF =
aX

j=1

nX

i=1

↵2
j (24)

The sum of squared residuals is

SSResiduals = EF =
aX

j=1

bX

k=1

nX

i=1

(Yijk � Ȳjk)
2 (25)

Finally, the F test for the main e↵ect of A is

FA =
SSA/(a� 1)

SSResiduals/(ab(n� 1))
(26)

with numerator and denominator degrees of freedom of (a� 1) and ab(n� 1), respectively.

1In a quadratic model that contains linear (x) and quadratic (x2) terms, the linear term is said to be marginal to
the quadratic term. In the case of factors, a main e↵ect, A, is said to be marginal to interactions that contain it (e.g.,
A⇥B, A⇥B⇥C, etc.). According to the principle of marginality, if a model contains a higher-order term (e.g., AB),
then it must also contain the terms marginal to it (e.g., A and B).

4

[calculated using full model]

df = {(b-1), ab(n-1)}

[null hypothesis]

FB = MSB ÷ MSresiduals
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7.3 main e↵ect of B

The null hypothesis for the main e↵ect of B is

�.1 = �2. = · · · = �.b = 0 (27)

which is equivalent to
Ȳ.1 = Ȳ.2 = · · · = Ȳ.b = 0 (28)

A significant main e↵ect of B means that the column marginal means — i.e., the average of scores
within a column and across all levels of A — are not all equal

The null hypothesis can be evaluated by comparing the sum of squared residuals from the full
model (i.e., Equation 1) to the sum of squared residuals for the restricted model

Yijk = µ+ ↵j + (↵�)jk + ✏ijk (29)

Alternatively, we could compare

Yijk = µ+ ✏ijk (30)

Yijk = µ+ �k + ✏ijk (31)

or

Yijk = µ+ ↵j + ✏ijk (32)

Yijk = µ+ ↵j + �k + ✏ijk (33)

All of the comments made about the various comparisons that can be done to calculate SSA also
apply to calculations of SSB. It can be shown that

SSB =
bX

k=1

nX

i=1

�2
k (34)

The F test for the main e↵ect of B is

FB =
SSB/(b� 1)

SSResidual/(ab(n� 1))
(35)

with numerator and denominator degrees of freedom of (b� 1) and ab(n� 1), respectively.

7.4 A⇥ B interaction

The null hypothesis for the AB interaction is

(↵�)11 = (↵�)12 = · · · = (↵�)ab = 0 (36)

A significant A⇥B interaction means that the at least one cell mean, Ȳjk, di↵ers from the predicted
value of µ+ ↵j + �k.

The significance of the interaction is evaluated by comparing Equation 1 to

Yijk = µ+ ↵j + �k + ✏ijk (37)

SSAB is given by

SSAB =
aX

j=1

bX

k=1

nX

i=1

(↵�)2jk (38)

The F test for the AB interaction is

FAB =
SSAB/((a� 1)(b� 1))

SSResidual/(ab(n� 1))
(39)

with numerator and denominator degrees of freedom of (a� 1)(b� 1) and ab(n� 1), respectively.

5

Bennett, PJ PSY710 Chapter 7

7.3 main e↵ect of B

The null hypothesis for the main e↵ect of B is

�.1 = �2. = · · · = �.b = 0 (27)

which is equivalent to
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7 Factorial Designs

In previous chapters we analyzed data from so-called one-way experimental designs, in which subjects
were randomly assigned to groups that di↵ered on a single treatment or grouping variable. In this
chapter we will analyze data from factorial experiments. Factorial experiments contain two or
more experimental variables. In a completely crossed factorial experiment, each level of every variable
is combined with each level of every other variable. So, if there are two variables with a and b levels,
then there will be ab combinations of treatments, which are sometimes called cells. Subjects are then
assigned randomly to the various combinations of treatments. Experiments that have equal n per
cell are called balanced designs. Designs with unequal n are unbalanced. We will start by analyzing
data from balanced designs, and then consider unbalanced data near the end of this chapter.

Our analyses will focus on factorial experiments with two experimental factors, A and B. (Higher-
order factorial designs are examined in chapter 8.) The design of a factorial experiment that has two
variables can be represented as a two-dimensional table, with the rows representing di↵erent levels
of variable A and the columns representing di↵erent levels of variable B. Each cell within the table
corresponds to a particular combination of treatments. For example, a1b3, which is the cell in row 1
and column 3, refers to the combination of level 1 of A and level 3 in B. I will often use the terms
“cell” or group to refer to a particular combination of treatments. Cell jk refers to the cell in row j
and column k.

7.1 Linear Model

The linear model for data collected in a two factor factorial experiment can be expressed as

Yijk = µ+ ↵j + �k + (↵�)jk + ✏ijk (1)

where Yijk is the score of individual i in cell jk, µ is a constant, ↵j is the e↵ect of treatment aj, �k is
the e↵ect of bk, (↵�)jk is the e↵ect of the combination ajbk, and ✏ijk is the error term. Notice that ↵j

is the e↵ect of a particular level of A without reference to B. In other words, ↵j represents the e↵ect
of being in row aj regardless of the level of B. Similarly, �k represents the e↵ect of being in column
bk regardless of the level of A. As we shall see, the ↵’s and �’s constitute the main e↵ects of A
and B, respectively. The e↵ect (↵�)jk, on the other hand, refers to the e↵ect of begin in a particular
cell, and collectively (i.e., across all cells) constitute the interaction between A and B, which often
is represented as A⇥ B. Interactions are discussed in more detail in section 7.4.1.

The main e↵ects are defined as

↵j = µj. � µ.. (2)

�k = µ.k � µ.. (3)

1

Nested Models

SSAxB is change in SSresiduals that occurs when all interaction effects are set to zero.

[does not violate principle of marginality!]
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7.3 main e↵ect of B

The null hypothesis for the main e↵ect of B is

�.1 = �2. = · · · = �.b = 0 (27)

which is equivalent to
Ȳ.1 = Ȳ.2 = · · · = Ȳ.b = 0 (28)

A significant main e↵ect of B means that the column marginal means — i.e., the average of scores
within a column and across all levels of A — are not all equal

The null hypothesis can be evaluated by comparing the sum of squared residuals from the full
model (i.e., Equation 1) to the sum of squared residuals for the restricted model
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All of the comments made about the various comparisons that can be done to calculate SSA also
apply to calculations of SSB. It can be shown that

SSB =
bX

k=1

nX

i=1

�2
k (34)

The F test for the main e↵ect of B is

FB =
SSB/(b� 1)

SSResidual/(ab(n� 1))
(35)

with numerator and denominator degrees of freedom of (b� 1) and ab(n� 1), respectively.

7.4 A⇥ B interaction

The null hypothesis for the AB interaction is

(↵�)11 = (↵�)12 = · · · = (↵�)ab = 0 (36)

A significant A⇥B interaction means that the at least one cell mean, Ȳjk, di↵ers from the predicted
value of µ+ ↵j + �k.

The significance of the interaction is evaluated by comparing Equation 1 to
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SSAB is given by
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bX
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to SSResidual obtained with the full model (i.e. Equation 1). The model in Equation 19 includes the
A⇥B interaction but not the main e↵ect of A, and therefore violates the principle of marginality.1

One undesirable feature of such models is that SSA depends crucially on the definition of ↵. Our
definition of an e↵ect is given by Equation 2, but other definitions are possible. For example, we
could define e↵ect ↵j as the di↵erence between the marginal mean of row j and the marginal row
mean of a baseline group (e.g., j = 1), giving ↵j = Ȳj � Ȳ1. This definition of an e↵ect, which is
sometimes called treatment coding, or reference-cell coding (see Appendix B in your textbook), is
entirely reasonable. Ideally, we would not want our results to depend on arbitrary definitions of an
e↵ect. Unfortunately, in some situations, the SSA derived from a comparison of Equations 1 and 19
does depend on our definition of ↵. This is one reason why some statisticians argue strongly against
the use of models that violate the marginality principle (Venables and Ripley, 2002). In any case, it
is important that you realize that comparison of Equations 1 and 19 yields SSA only when ↵’s are
defined as in Equation 2.

Are there other model comparisons that can be used to evaluate the null hypothesis in Equation
17? The answer is, yes. For example we can compare the fits provided by the models

Yijk = µ+ ✏ijk (20)

Yijk = µ+ ↵j + ✏ijk (21)

Alternatively, we can compare the following two models

Yijk = µ+ �k + ✏ijk (22)

Yijk = µ+ ↵j + �k + ✏ijk (23)

Notice that both comparisons involve models that di↵er only in the presence or absence of ↵ coe�-
cients, and so therefore should provide estimates of SSA. In fact, comparisons of models 1 and 19,
20 and 21, and 22 and 23 yield identical values for SSA provided that there are equal n per

group and we use sum-to-zero coding.

7.2.1 calculating F

The null hypothesis (Equation 17) is evaluated by comparing SSA to sum of squared residuals
(SSResiduals) for the full model (i.e., Eq. 1). It can be shown that

SSA = ER � EF =
aX

j=1

nX

i=1

↵2
j (24)

The sum of squared residuals is

SSResiduals = EF =
aX

j=1

bX

k=1

nX

i=1

(Yijk � Ȳjk)
2 (25)

Finally, the F test for the main e↵ect of A is

FA =
SSA/(a� 1)

SSResiduals/(ab(n� 1))
(26)

with numerator and denominator degrees of freedom of (a� 1) and ab(n� 1), respectively.

1In a quadratic model that contains linear (x) and quadratic (x2) terms, the linear term is said to be marginal to
the quadratic term. In the case of factors, a main e↵ect, A, is said to be marginal to interactions that contain it (e.g.,
A⇥B, A⇥B⇥C, etc.). According to the principle of marginality, if a model contains a higher-order term (e.g., AB),
then it must also contain the terms marginal to it (e.g., A and B).

4

[calculated using full model]

df = {(a-1)(b-1), ab(n-1)}

[null hypothesis]

FAxB = MSAxB ÷ MSresiduals
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ANOVA table

SS df MS F p

A SSA dfA = a-1 MSA = SSA/dfA MSA/MSW

B SSB dfB = b-1 MSB = SSB/dfB MSB/MSW

A x B SSAxB dfAxB = (a-1)(b-1) MSAxB = SSAxB/dfAxB MSAxB/MSW

Within Cell 
(residuals) SSW dfW = ab(n-1) MSW = SSW/dfW

Interpreting Interactions



Interpreting AxB Interaction

• interaction effect is the difference between cell mean and the sum of the 
intercept & main effects: 

• if interaction effects are zero, then differences among cell means are due 
differences between alpha’s and/or beta’s (row & column effects) 

• if interactions are not zero then effect of A depends on level of B (and effect 
of B depends on level of A)

(↵�)ij = Ȳij � µ� ↵j � �k

Graphical Depiction of AxB Interaction
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Figure 1: Illustration of an A⇥ B interaction.
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AxB interaction implies that the effect of A 
depends on the level of B, and the effect of 
B depends on the level of A

(A1B1 − A1B2) ≠ (A2B1 − A2B2)

(A1B1 − A2B1) ≠ (A1B2 − A2B2)

Interactions

• 2-way (A x B) interactions assess whether the effect of one factor 
depends on the level of the other factor 
- Does the effect of A depend on the level of B? 
- Does the effect of B depend on the level of A? 

• 3-way (A x B x C) interactions assess whether the interaction between 2 
factors depends on the level of the 3rd factor 
- Does the AxB interaction depend on the level of C? 
- Does the AxC interaction depend on the level of B? 
- Does the BxC interaction depend on the level of A?

Graphical representation of 2-way interactions

Significant 2-way interactions imply a 
significant deviation from parallelism.

Significant AxB interaction implies: 

- Difference between a1 & a2 
depends on level of B. 

- Difference between b1 & b2 
depends on level of A.
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Graphical representation of 3-way interactions

Significant 3-way interactions imply that the 
deviation from parallelism in a 2-way interaction 
depends on the level of the 3rd factor
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• AxB interaction depends on level of C 
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Incorrect Interpretations of Interactions 
common problem in published scientific papers

• It often is interesting to find interactions 

• But often they are “discovered” with faulty 
statistical methods

Incorrect Interpretations of Interactions

• Interaction determines if difference 
between 2 differences is significant 
- Is {(b2-b1) at a1} minus {(b2-b1) at a2} 

significantly different from zero? 

• Not the same as doing separate tests of 
(b2-b1) at a1 and (b2-b1) at a2 
• Example: if t-test 1 is not significant but t-

test 2 is significant, will AxB interaction be 
significant? 
- not necessarily…
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• Suppose both tests are significant… does that mean 
that the effect of B does not depend on A? 
•  i.e., that the AxB interaction is not significant? 
- not necessarily
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Incorrect Interpretations of Interactions

• Suppose that both tests are not significant… does that 
mean that the effect of B does not depend on A? 
•  i.e., that the AxB interaction is not significant? 
- not necessarily
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Incorrect Interpretations of Interactions

• To determine if the effect of one variable 
depends on another… 
- e.g., if the effect of one variable differs between 

groups or ages or genders 

• …you need to assess the interaction 
between the 2 variables 
• do not rely on significance tests performed 

separately on the different groups
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S
co
re

AxB interaction?

b1
b2

Factor B

a1 a2

test 1

test 2

Nieuwehnuis, Forstmann, & Wagenmakers, Nature Neurosci, 2011, 14, 1105-1107
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7.6 an example

In this section I will illustrate how to analyze data collected in an experiment that used a balanced
factorial design. There are two factors, A and B, and each factor has two levels. The dependent
variable is denoted by y. Finally, there are 6 scores per cell. Here is how I initialized R and created
the fake data:

> options(contrasts=c("contr.sum","contr.poly"))

> a<-rep(c(-1,-1,1,1),each=6)

> b<-rep(c(-1,1,-1,1),each=6)

> ab<-rep(c(-1,1,1,-1),each=6)

> y<-10+2*a+1*b+0.5*ab

> set.seed(123456);

> nz<-rnorm(y)

> y<-y+nz;

> af<-factor(a,labels=c("a1","a2"),ordered=F)

> bf<-factor(b,labels=c("b1","b2"),ordered=F)

> myData <- data.frame(y,af,bf)

> names(myData) <- c("y","A","B")

As was the case for a one-way ANOVA, data from factorial designs can be analyzed with the lm()
or aov() commands. However, the formula that defines the linear model is slightly more complicated
than the one used to analyze data collected with one-way designs. In this factorial experiment, the
linear model is defined with the the formula y ⇠ 1+A+B+A : B, where 1 represents the intercept,
A and B represent the main e↵ects, and A:B is the A x B interaction. The formula can be interpreted
as saying that y is modeled as the sum of an intercept term, a main e↵ect of A, a main e↵ect of B,
and an A x B interaction. Here, I use the lm() and anova() commands to do the analysis and print
the summary table:

> lm.full.model <- lm(y ~ 1 + A + B + A:B, data=myData)

> anova(lm.full.model)

The output is listed in the Table 1. In R, the ANOVA table shows sequential sums-of-squares. So
SSA is derived from a comparison between models 20 and 21, SSB comes from a comparison of
models 21 and 23, and SSAB comes from a comparison of models 23 and 1.

Df Sum Sq Mean Sq F value Pr(>F)
A 1 94.25 94.25 84.59 0.0000
B 1 23.21 23.21 20.83 0.0002
A:B 1 4.63 4.63 4.15 0.0550
Residuals 20 22.28 1.11

Table 1: ANOVA table for full model.

Normally, the anova table for the full model is all you need. However, I want to show you that the
terms in the full model really do come from a comparison of di↵erent reduced models. For example,
we can compute SSA by doing a direct comparison of models 20 and 21:

> lm.01 <- lm(y ~ 1, data=myData)

> lm.02.a <- lm(y ~ 1 + A, data=myData)

> anova(lm.01, lm.02.a)
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to SSResidual obtained with the full model (i.e. Equation 1). The model in Equation 19 includes the
A⇥B interaction but not the main e↵ect of A, and therefore violates the principle of marginality.1

One undesirable feature of such models is that SSA depends crucially on the definition of ↵. Our
definition of an e↵ect is given by Equation 2, but other definitions are possible. For example, we
could define e↵ect ↵j as the di↵erence between the marginal mean of row j and the marginal row
mean of a baseline group (e.g., j = 1), giving ↵j = Ȳj � Ȳ1. This definition of an e↵ect, which is
sometimes called treatment coding, or reference-cell coding (see Appendix B in your textbook), is
entirely reasonable. Ideally, we would not want our results to depend on arbitrary definitions of an
e↵ect. Unfortunately, in some situations, the SSA derived from a comparison of Equations 1 and 19
does depend on our definition of ↵. This is one reason why some statisticians argue strongly against
the use of models that violate the marginality principle (Venables and Ripley, 2002). In any case, it
is important that you realize that comparison of Equations 1 and 19 yields SSA only when ↵’s are
defined as in Equation 2.

Are there other model comparisons that can be used to evaluate the null hypothesis in Equation
17? The answer is, yes. For example we can compare the fits provided by the models

Yijk = µ+ ✏ijk (20)

Yijk = µ+ ↵j + ✏ijk (21)

Alternatively, we can compare the following two models

Yijk = µ+ �k + ✏ijk (22)

Yijk = µ+ ↵j + �k + ✏ijk (23)

Notice that both comparisons involve models that di↵er only in the presence or absence of ↵ coe�-
cients, and so therefore should provide estimates of SSA. In fact, comparisons of models 1 and 19,
20 and 21, and 22 and 23 yield identical values for SSA provided that there are equal n per

group and we use sum-to-zero coding.

7.2.1 calculating F

The null hypothesis (Equation 17) is evaluated by comparing SSA to sum of squared residuals
(SSResiduals) for the full model (i.e., Eq. 1). It can be shown that

SSA = ER � EF =
aX

j=1

nX

i=1

↵2
j (24)

The sum of squared residuals is

SSResiduals = EF =
aX

j=1

bX

k=1

nX

i=1

(Yijk � Ȳjk)
2 (25)

Finally, the F test for the main e↵ect of A is

FA =
SSA/(a� 1)

SSResiduals/(ab(n� 1))
(26)

with numerator and denominator degrees of freedom of (a� 1) and ab(n� 1), respectively.

1In a quadratic model that contains linear (x) and quadratic (x2) terms, the linear term is said to be marginal to
the quadratic term. In the case of factors, a main e↵ect, A, is said to be marginal to interactions that contain it (e.g.,
A⇥B, A⇥B⇥C, etc.). According to the principle of marginality, if a model contains a higher-order term (e.g., AB),
then it must also contain the terms marginal to it (e.g., A and B).
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7 Factorial Designs

In previous chapters we analyzed data from so-called one-way experimental designs, in which subjects
were randomly assigned to groups that di↵ered on a single treatment or grouping variable. In this
chapter we will analyze data from factorial experiments. Factorial experiments contain two or
more experimental variables. In a completely crossed factorial experiment, each level of every variable
is combined with each level of every other variable. So, if there are two variables with a and b levels,
then there will be ab combinations of treatments, which are sometimes called cells. Subjects are then
assigned randomly to the various combinations of treatments. Experiments that have equal n per
cell are called balanced designs. Designs with unequal n are unbalanced. We will start by analyzing
data from balanced designs, and then consider unbalanced data near the end of this chapter.

Our analyses will focus on factorial experiments with two experimental factors, A and B. (Higher-
order factorial designs are examined in chapter 8.) The design of a factorial experiment that has two
variables can be represented as a two-dimensional table, with the rows representing di↵erent levels
of variable A and the columns representing di↵erent levels of variable B. Each cell within the table
corresponds to a particular combination of treatments. For example, a1b3, which is the cell in row 1
and column 3, refers to the combination of level 1 of A and level 3 in B. I will often use the terms
“cell” or group to refer to a particular combination of treatments. Cell jk refers to the cell in row j
and column k.

7.1 Linear Model

The linear model for data collected in a two factor factorial experiment can be expressed as

Yijk = µ+ ↵j + �k + (↵�)jk + ✏ijk (1)

where Yijk is the score of individual i in cell jk, µ is a constant, ↵j is the e↵ect of treatment aj, �k is
the e↵ect of bk, (↵�)jk is the e↵ect of the combination ajbk, and ✏ijk is the error term. Notice that ↵j

is the e↵ect of a particular level of A without reference to B. In other words, ↵j represents the e↵ect
of being in row aj regardless of the level of B. Similarly, �k represents the e↵ect of being in column
bk regardless of the level of A. As we shall see, the ↵’s and �’s constitute the main e↵ects of A
and B, respectively. The e↵ect (↵�)jk, on the other hand, refers to the e↵ect of begin in a particular
cell, and collectively (i.e., across all cells) constitute the interaction between A and B, which often
is represented as A⇥ B. Interactions are discussed in more detail in section 7.4.1.

The main e↵ects are defined as

↵j = µj. � µ.. (2)

�k = µ.k � µ.. (3)
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7.6 an example

In this section I will illustrate how to analyze data collected in an experiment that used a balanced
factorial design. There are two factors, A and B, and each factor has two levels. The dependent
variable is denoted by y. Finally, there are 6 scores per cell. Here is how I initialized R and created
the fake data:

> options(contrasts=c("contr.sum","contr.poly"))

> a<-rep(c(-1,-1,1,1),each=6)

> b<-rep(c(-1,1,-1,1),each=6)

> ab<-rep(c(-1,1,1,-1),each=6)

> y<-10+2*a+1*b+0.5*ab

> set.seed(123456);

> nz<-rnorm(y)

> y<-y+nz;

> af<-factor(a,labels=c("a1","a2"),ordered=F)

> bf<-factor(b,labels=c("b1","b2"),ordered=F)

> myData <- data.frame(y,af,bf)

> names(myData) <- c("y","A","B")

As was the case for a one-way ANOVA, data from factorial designs can be analyzed with the lm()
or aov() commands. However, the formula that defines the linear model is slightly more complicated
than the one used to analyze data collected with one-way designs. In this factorial experiment, the
linear model is defined with the the formula y ⇠ 1+A+B+A : B, where 1 represents the intercept,
A and B represent the main e↵ects, and A:B is the A x B interaction. The formula can be interpreted
as saying that y is modeled as the sum of an intercept term, a main e↵ect of A, a main e↵ect of B,
and an A x B interaction. Here, I use the lm() and anova() commands to do the analysis and print
the summary table:

> lm.full.model <- lm(y ~ 1 + A + B + A:B, data=myData)

> anova(lm.full.model)

The output is listed in the Table 1. In R, the ANOVA table shows sequential sums-of-squares. So
SSA is derived from a comparison between models 20 and 21, SSB comes from a comparison of
models 21 and 23, and SSAB comes from a comparison of models 23 and 1.

Df Sum Sq Mean Sq F value Pr(>F)
A 1 94.25 94.25 84.59 0.0000
B 1 23.21 23.21 20.83 0.0002
A:B 1 4.63 4.63 4.15 0.0550
Residuals 20 22.28 1.11

Table 1: ANOVA table for full model.

Normally, the anova table for the full model is all you need. However, I want to show you that the
terms in the full model really do come from a comparison of di↵erent reduced models. For example,
we can compute SSA by doing a direct comparison of models 20 and 21:

> lm.01 <- lm(y ~ 1, data=myData)

> lm.02.a <- lm(y ~ 1 + A, data=myData)

> anova(lm.01, lm.02.a)

8
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Analysis of Variance Table

Model 1: y ~ 1

Model 2: y ~ 1 + A

Res.Df RSS Df Sum of Sq F Pr(>F)

1 23 144.370

2 22 50.124 1 94.246 41.366 1.801e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

NA Note that the di↵erence between the SSResidual for the two models is the same as SSA for
the full model2. Next, we compare models 22 and 23. Again, the change in SSResidual is the same as
SSA from the full model.

> lm.02.b <- lm(y ~ 1 + B, data=myData)

> lm.03 <- lm(y ~ 1 + A + B, data=myData)

> anova(lm.02.b, lm.03)

Analysis of Variance Table

Model 1: y ~ 1 + B

Model 2: y ~ 1 + A + B

Res.Df RSS Df Sum of Sq F Pr(>F)

1 22 121.16

2 21 26.91 1 94.246 73.549 2.654e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

NA And, finally, we calculate SSA using Equation 24:

> row.means <- with(myData,tapply(y, A, mean))

> grand.mean <- mean(row.means)

> alphas <- row.means - grand.mean

> row.n <- with(myData,tapply(y, A, length))

> levels(myData$A)

[1] "a1" "a2"

> a.levels <- 2

> (SS.a <- sum((alphas^2) * row.n))

[1] 94.24643

All of these methods yield the same value for SSA. Likewise, the values of SSB and SSAB can be
calculated in several di↵erent ways. Trust me.

2Although the comparison yields the same value for SSA, it does not yield the same F that was obtained in the full
analysis. The reason for this di↵erence is that the two analyses use di↵erent estimates of the population error variance:
the denominators in the F tests di↵er. In the full analysis, error is estimated after accounting for the (possible) e↵ects
of A, B, and the A x B interaction. In the current analysis, error is estimated after accounting for the (possible) e↵ect
of A and ignoring the (possible) e↵ects of B and the A x B interaction.

9
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A:B 1 4.63 4.63 4.15 0.0550
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Table 1: ANOVA table for full model.
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terms in the full model really do come from a comparison of di↵erent reduced models. For example,
we can compute SSA by doing a direct comparison of models 20 and 21:

> lm.01 <- lm(y ~ 1, data=myData)

> lm.02.a <- lm(y ~ 1 + A, data=myData)

> anova(lm.01, lm.02.a)
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variable is denoted by y. Finally, there are 6 scores per cell. Here is how I initialized R and created
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> myData <- data.frame(y,af,bf)
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or aov() commands. However, the formula that defines the linear model is slightly more complicated
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linear model is defined with the the formula y ⇠ 1+A+B+A : B, where 1 represents the intercept,
A and B represent the main e↵ects, and A:B is the A x B interaction. The formula can be interpreted
as saying that y is modeled as the sum of an intercept term, a main e↵ect of A, a main e↵ect of B,
and an A x B interaction. Here, I use the lm() and anova() commands to do the analysis and print
the summary table:

> lm.full.model <- lm(y ~ 1 + A + B + A:B, data=myData)

> anova(lm.full.model)
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B 1 23.21 23.21 20.83 0.0002
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Table 1: ANOVA table for full model.

Normally, the anova table for the full model is all you need. However, I want to show you that the
terms in the full model really do come from a comparison of di↵erent reduced models. For example,
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> lm.01 <- lm(y ~ 1, data=myData)

> lm.02.a <- lm(y ~ 1 + A, data=myData)

> anova(lm.01, lm.02.a)
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7.7 R and marginality

In the previous section, I did not calculate SSA by comparing models 1 and 19. Let’s do so here:

> lm.04 <- lm(y ~ 1 + B + A:B,data=myData)

> anova(lm.04, lm.full.model)

Analysis of Variance Table

Model 1: y ~ 1 + B + A:B

Model 2: y ~ 1 + A + B + A:B

Res.Df RSS Df Sum of Sq F Pr(>F)

1 20 22.284

2 20 22.284 0 3.5527e-15

Notice that the results do not look like the ones obtained in the previous section. Why not? If
you examine the anova table carefully you will see that the residual degrees of freedom equals 20 in
both models. This result is surprising because we removed the A main e↵ect in the reduced model,
so the residuals degrees of freedom should be greater in that model. The problem here is that R
does not look kindly upon models that violate the marginality principle, and so the e↵ects of A
have been incorporated surreptitiously into the reduced model. In fact, the command anova(lm.04)

would show that the degrees of freedom for A and SSA have been added to the values for the A:B

interaction.

> anova(lm.04)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

B 1 23.214 23.214 20.835 0.0001883 ***

B:A 2 98.872 49.436 44.370 4.43e-08 ***

Residuals 20 22.284 1.114

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Furthermore, a comparison of the e↵ects for A and the A⇥B interaction calculated in the full model

> dummy.coef(lm.full.model)

Full coefficients are

(Intercept): 10.46698

A: a1 a2

-1.981649 1.981649

B: b1 b2

-0.9834858 0.9834858

A:B: a1:b1 a2:b1 a1:b2 a2:b2

-0.4390275 0.4390275 0.4390275 -0.4390275

are added together to form the A⇥ B interaction e↵ects in the reduced model
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> dummy.coef(lm.04)

Full coefficients are

(Intercept): 10.46698

B: b1 b2

-0.9834858 0.9834858

B:A: b1:a1 b2:a1 b1:a2 b2:a2

-2.420677 -1.542622 2.420677 1.542622

The bottom line is that R intentionally makes it di�cult for you to construct and compare models
that violate the marginality principle.

7.8 measures of association strength & e↵ect size

We are considering a factorial experiment in which the factors are fixed (i.e., all of the factors about
which inferences are to be drawn are included in the experiment). In this case, the appropriate
(Kirk, 1995) measure of association strength is partial omega squared (!2

partial). !
2
partial expresses

the variance of each treatment e↵ect relative to the sum of the treatment e↵ect variance and error
variance. Note that “error” refers to the error calculated from the full model: it is the unexplained
variance. Hence, !2

A,partial expresses the variance among ↵’s relative to the sum of the error variance
and the ↵ variance, and it ignores the variation in the dependent variable that is due to the e↵ects
of B or A⇥ B. Here are the definitions of !2

partial in terms of the treatment e↵ects:

!2
A,partial =

Pa
j=1(↵

2
j/a)

�2
e +

Pa
j=1(↵

2
j/a)

!2
B,partial =

Pb
k=1(�

2
k/b)

�2
e +

Pb
k=1(�

2
k/b)

!2
AB,partial =

Pa
j=1

Pb
k=1

⇥
(↵�)2jk/(ab)

⇤

�2
e +

Pa
j=1

Pb
k=1

⇥
(↵�)2jk/(ab)

⇤

Usually it is easier to calculate !2
partial using the values listed in the ANOVA table for the full model.

Here is how !2
partial is defined in terms of SStreatment and MSResiduals

!2
A,partial =

SSA � dfAMSResiduals

SSA + (N � dfA)MSResiduals

!2
B,partial =

SSB � dfBMSResiduals

SSB + (N � dfB)MSResiduals

!2
AB,partial =

SSAB � dfABMSResiduals

SSAB + (N � dfAB)MSResiduals

Here is how !2
partial is defined in terms of F values:

!2
A,partial =

dfA(FA � 1)

dfA(FA � 1) +N

11

sum of coefficients for A & A:B

+

R and Marginality

• R intentionally makes it difficult (though not impossible) to violate marginality 

• later we will use drop1 command to evaluate models that violate marginality

alternatives to lm & aov



decomposing a main effect

analyses of “sub-effects”

Analyzing a Significant Main Effect
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The denominator degrees of freedom is given by the formula

df residuals = a⇥ b⇥ (n� 1)

so we would need n = 14 subjects per cell to achieve df residuals = 154 and a power of 0.8.

> pwr.f2.test(u=3-1,v=3*4*(14-1),f2=(0.25^2),sig.level=.05)

Multiple regression power calculation

u = 2

v = 156

f2 = 0.0625

sig.level = 0.05

power = 0.8048873

7.10 linear contrasts

A significant main e↵ect implies that the marginal means are not all equal, but it does not tell us
how the means di↵er. To get a clearer picture of the di↵erences among means, we often will do one
or more linear contrasts. I will use the data from Table 7.5 in your textbook.

> names(mw75)

[1] "drug" "biofeedback" "score"

> with(mw75,tapply(score,list(drug,biofeedback),length))

no yes

x 5 5

y 5 5

z 5 5

> with(mw75,tapply(score,list(drug,biofeedback),mean))

no yes

x 186 170

y 201 203

z 210 188

> with(mw75,tapply(score,list(drug,biofeedback),sd))

no yes

x 10.83974 7.905694

y 10.93161 13.910428

z 15.81139 13.838353

> mw.aov.01<-aov(score~drug*biofeedback,data=mw75)

> summary(mw.aov.01)
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Tukey HSD [all pairs of marginal means] Analyzing a Significant Main Effect 
testing sub-effects with linear contrasts

contrast is significant 
MARGINAL x, y means differ

contrast x biofeedback 
interaction is significant

compares drugs x & y ignoring z
N.B. contrast for biofeedback is c(-1,1) because it has only 2 levels



Analyzing a Significant Main Effect 
testing sub-effects with linear contrasts

R2alerting = SS(ѱ) / SS(Drug x Bio) = 1110/1248 = 0.89

R2effect size = SS(ѱ) / SS(Total) = 1110/9369 = 0.12

R2alerting = SS(ѱ) / SS(Drug) = 1638/1882= 0.87

R2effect size = SS(ѱ) / SS(Total) = 1638/9369 = 0.17

decomposing an interaction

simple main effects

Example (section 7.11 in course notes)
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[1] "V1" "V2" "V3"

> names(mw11) <- c("group", "task", "score")

> names(mw11)

[1] "group" "task" "score"

> class(mw11$group)

[1] "integer"

> class(mw11$task)

[1] "integer"

> class(mw11$score)

[1] "integer"

The group and task variables are integer variables because the di↵erent levels were defined with
numbers rather than letters. I want my ANOVA to treat group and task as factors, so I will create
two new variables gf and tf:

> mw11$gf <- factor(mw11$group, labels = c("amnesic", "huntingtons", "control"),ordered = FALSE)

> mw11$tf <- factor(mw11$task, labels = c("grammar", "classification", "recognition"), ordered = FALSE)

> names(mw11)

[1] "group" "task" "score" "gf" "tf"

> class(mw11$gf)

[1] "factor"

> class(mw11$tf)

[1] "factor"

I use the lm() and anova() commands to do the analysis and print the summary table. In this
factorial experiment, the linear model is defined with the the formula

score ⇠ 1 + gf + tf + gf : tf

where 1 represents the intercept, gf and tf represent the group and task main e↵ects, and gf:tf is
the group x task interaction. The formula can be interpreted as saying that score is modeled as the
sum of an intercept term, a group main e↵ect, a task main e↵ect, and a group x task interaction.
Here is the ANOVA:

> mw11.lm.01 <- lm(score ~ 1+ gf + tf + gf:tf, data = mw11)

> anova(mw11.lm.01)
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tf: task factor (3 levels) 
gf: group factor (3 levels)
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Analysis of Variance Table

Response: score

Df Sum Sq Mean Sq F value Pr(>F)

gf 2 5250 2625.00 16.6373 7.64e-06 ***

tf 2 5250 2625.00 16.6373 7.64e-06 ***

gf:tf 4 5000 1250.00 7.9225 0.0001092 ***

Residuals 36 5680 157.78

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> MS.w <- 157.8

> df.w <- 36

The interaction between group and task is significant. I save the MSResdiuals, or MSWithin, and the
degrees of freedom because we will need them later. The command interaction.plot can be used
to get a better sense of what the interaction means. The command

interaction.plot(x.factor=mw11$gf,trace.factor=mw11$tf,response=mw11$score,trace.label="task")

creates the following figure:

It looks as though the e↵ect of task may be significant for the group of Huntington’s patients, but not
the other groups. I will evaluate this idea by testing the e↵ect of task at each level of group. (N.B.

20

Example Table 7.11 in Textbook
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Analysis of Variance Table

Response: score

Df Sum Sq Mean Sq F value Pr(>F)

gf 2 5250 2625.00 16.6373 7.64e-06 ***

tf 2 5250 2625.00 16.6373 7.64e-06 ***

gf:tf 4 5000 1250.00 7.9225 0.0001092 ***

Residuals 36 5680 157.78

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> MS.w <- 157.8

> df.w <- 36

The interaction between group and task is significant. I save the MSResdiuals, or MSWithin, and the
degrees of freedom because we will need them later. The command interaction.plot can be used
to get a better sense of what the interaction means. The command

interaction.plot(x.factor=mw11$gf,trace.factor=mw11$tf,response=mw11$score,trace.label="task")

creates the following figure:
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It looks as though the e↵ect of task may be significant for the group of Huntington’s patients, but not
the other groups. I will evaluate this idea by testing the e↵ect of task at each level of group. (N.B.
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illustration of group x task interaction
analyze simple main effect of task in each group



Simple Main Effect of Task
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Next we construct the appropriate linear models and display the anova tables for the e↵ect of
task for each group:

> lm.task.hunt <- lm(score ~ 1 + tf, data = subset(mw11, gf == "huntingtons"))

> lm.task.amnesic <- lm(score ~ 1 + tf, data = subset(mw11, gf == "amnesic"))

> lm.task.control <- lm(score ~ 1 + tf, data = subset(mw11, gf == "control"))

Finally, we print the anova table for each model, extract SStask, and then compute F and p values
using MSWithin and dfWithin from our original analysis.

Here is the simple main e↵ect of task for the Huntington’s group. Notice how I recalculate F :

> anova(lm.task.hunt)

Analysis of Variance Table

Response: score

Df Sum Sq Mean Sq F value Pr(>F)

tf 2 9250 4625.0 29.365 2.385e-05 ***

Residuals 12 1890 157.5

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> (F.task.hunt <- 4625/MS.w)

[1] 29.30925

> (p.task.hunt <- 1 - pf(F.task.hunt, df1 = 2, df2 = df.w))

[1] 2.791744e-08

The simple main e↵ect is significant. We could now proceed to do contrasts or pairwise comparisons
among the three tasks to see which ones di↵er. Below, I compute pairwise di↵erences using Tukey’s
HSD method. Because there are only three groups, however, it might be better to simply do pairwise
t-tests and use the Bonferroni adjustment to control Type I error rate (see Table 5.9 in your textbook).

You might think that performing a Tukey HSD test on a simple main e↵ect is done by passing
the aov object to TukeyHSD:

> aov.task.hunt <- aov(score ~ tf, data = subset(mw11, gf == "huntingtons"))

> TukeyHSD(aov.task.hunt)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = score ~ tf, data = subset(mw11, gf == "huntingtons"))

$tf

diff lwr upr p adj

classification-grammar 5 -16.17551 26.17551 0.8067924

recognition-grammar 55 33.82449 76.17551 0.0000437

recognition-classification 50 28.82449 71.17551 0.0001084

22

Bennett, PJ PSY710 Chapter 7

Next we construct the appropriate linear models and display the anova tables for the e↵ect of
task for each group:

> lm.task.hunt <- lm(score ~ 1 + tf, data = subset(mw11, gf == "huntingtons"))

> lm.task.amnesic <- lm(score ~ 1 + tf, data = subset(mw11, gf == "amnesic"))

> lm.task.control <- lm(score ~ 1 + tf, data = subset(mw11, gf == "control"))

Finally, we print the anova table for each model, extract SStask, and then compute F and p values
using MSWithin and dfWithin from our original analysis.

Here is the simple main e↵ect of task for the Huntington’s group. Notice how I recalculate F :

> anova(lm.task.hunt)

Analysis of Variance Table

Response: score

Df Sum Sq Mean Sq F value Pr(>F)

tf 2 9250 4625.0 29.365 2.385e-05 ***

Residuals 12 1890 157.5

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> (F.task.hunt <- 4625/MS.w)

[1] 29.30925

> (p.task.hunt <- 1 - pf(F.task.hunt, df1 = 2, df2 = df.w))

[1] 2.791744e-08

The simple main e↵ect is significant. We could now proceed to do contrasts or pairwise comparisons
among the three tasks to see which ones di↵er. Below, I compute pairwise di↵erences using Tukey’s
HSD method. Because there are only three groups, however, it might be better to simply do pairwise
t-tests and use the Bonferroni adjustment to control Type I error rate (see Table 5.9 in your textbook).

You might think that performing a Tukey HSD test on a simple main e↵ect is done by passing
the aov object to TukeyHSD:

> aov.task.hunt <- aov(score ~ tf, data = subset(mw11, gf == "huntingtons"))

> TukeyHSD(aov.task.hunt)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = score ~ tf, data = subset(mw11, gf == "huntingtons"))

$tf

diff lwr upr p adj

classification-grammar 5 -16.17551 26.17551 0.8067924

recognition-grammar 55 33.82449 76.17551 0.0000437

recognition-classification 50 28.82449 71.17551 0.0001084
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Analyze task within each group:

Print ANOVA table:
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Next we construct the appropriate linear models and display the anova tables for the e↵ect of
task for each group:

> lm.task.hunt <- lm(score ~ 1 + tf, data = subset(mw11, gf == "huntingtons"))

> lm.task.amnesic <- lm(score ~ 1 + tf, data = subset(mw11, gf == "amnesic"))

> lm.task.control <- lm(score ~ 1 + tf, data = subset(mw11, gf == "control"))

Finally, we print the anova table for each model, extract SStask, and then compute F and p values
using MSWithin and dfWithin from our original analysis.

Here is the simple main e↵ect of task for the Huntington’s group. Notice how I recalculate F :

> anova(lm.task.hunt)

Analysis of Variance Table

Response: score

Df Sum Sq Mean Sq F value Pr(>F)

tf 2 9250 4625.0 29.365 2.385e-05 ***

Residuals 12 1890 157.5

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> (F.task.hunt <- 4625/MS.w)

[1] 29.30925

> (p.task.hunt <- 1 - pf(F.task.hunt, df1 = 2, df2 = df.w))

[1] 2.791744e-08

The simple main e↵ect is significant. We could now proceed to do contrasts or pairwise comparisons
among the three tasks to see which ones di↵er. Below, I compute pairwise di↵erences using Tukey’s
HSD method. Because there are only three groups, however, it might be better to simply do pairwise
t-tests and use the Bonferroni adjustment to control Type I error rate (see Table 5.9 in your textbook).

You might think that performing a Tukey HSD test on a simple main e↵ect is done by passing
the aov object to TukeyHSD:

> aov.task.hunt <- aov(score ~ tf, data = subset(mw11, gf == "huntingtons"))

> TukeyHSD(aov.task.hunt)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = score ~ tf, data = subset(mw11, gf == "huntingtons"))

$tf

diff lwr upr p adj

classification-grammar 5 -16.17551 26.17551 0.8067924

recognition-grammar 55 33.82449 76.17551 0.0000437

recognition-classification 50 28.82449 71.17551 0.0001084
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Recalculate F & P values:

1)

2) 3)

Simple Main Effect of Task (emmeans)

<= results are identical to ones obtained previously

mw11.em <- emmeans(mw11.lm.01, specs=“tf”, by=“gf”) # different way of specifying emmeans object

Tukey HSD applied to Simple Main Effect (emmeans)

decomposing an interaction

interaction contrasts



evaluating specific interactions

• often an experimenter expects an interaction 

- a particular sub-effect on one factor to varies across levels of other factor 

• Example: predictions for task x group interaction 

- Task sub-effect: difference between implicit & explicit memory tasks 

‣ task contrast = (0.5*grammar + 0.5*classification) - (1*recognition) ≠ 0 

- prediction: task contrast differs between Amnesic & Huntington’s patients 

‣ Amnesic patients have deficits on explicit, not implicit, memory tasks 

‣ Huntington’s patients have deficits on implicit, not explicit, memory tasks 

‣ Task ContrastAmnesic - Task ContrastHunt ≠ 0
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Analysis of Variance Table

Response: score

Df Sum Sq Mean Sq F value Pr(>F)

gf 2 5250 2625.00 16.6373 7.64e-06 ***

tf 2 5250 2625.00 16.6373 7.64e-06 ***

gf:tf 4 5000 1250.00 7.9225 0.0001092 ***

Residuals 36 5680 157.78

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> MS.w <- 157.8

> df.w <- 36

The interaction between group and task is significant. I save the MSResdiuals, or MSWithin, and the
degrees of freedom because we will need them later. The command interaction.plot can be used
to get a better sense of what the interaction means. The command

interaction.plot(x.factor=mw11$gf,trace.factor=mw11$tf,response=mw11$score,trace.label="task")

creates the following figure:
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It looks as though the e↵ect of task may be significant for the group of Huntington’s patients, but not
the other groups. I will evaluate this idea by testing the e↵ect of task at each level of group. (N.B.
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creating interaction contrast weights

Grammar Classification Recognition

0.5 0.5 -1

Amnesic 1

Huntington’s -1

Control 0

weights for task contrast

weights for group contrast

derive weights to determine if implicit/explicit contrast differs between Amnesic & Huntington’s groups

creating interaction contrast weights

Grammar Classification Recognition

0.5 0.5 -1

Amnesic 1 0.5 0.5 -1

Huntington’s -1 -0.5 -0.5 1

Control 0 0 0 0

cell weight = row x column

derive weights to determine if implicit/explicit contrast differs between Amnesic & Huntington’s groups

interaction contrast

R2effect = SScontrast/SStotal = 4594/(5250+5250+5000+5680) = 0.217
R2alerting = SScontrast/SSinteraction = 4594/(5000) = 0.919 almost all of the interaction is accounted for by our contrast



alternative method

apply contrast to 1-way layout of our 2x3 design

creating interaction contrast weights

Cell task group task x group

Amnesic-Grammar 0.5 1 0.5

Amnesic-Classification 0.5 1 0.5

Amnesic-Recog -1 1 -1

Huntington’s - Grammar 0.5 -1 -0.5

Huntington’s - Classification 0.5 -1 -0.5

Huntington’s - Recog -1 -1 1

Control - Grammar 0.5 0 0

Control - Classification 0.5 0 0

Control - Recog -1 0 0

derive weights to determine if implicit/explicit contrast differs between Amnesic & Huntington’s groups

interaction contrast 
(convert 2-way factorial to 1-way design)

           levels.mw11.cell.    w
1            grammar.amnesic  0.5
2     classification.amnesic  0.5
3        recognition.amnesic -1.0
4        grammar.huntingtons -0.5
5 classification.huntingtons -0.5
6    recognition.huntingtons  1.0
7            grammar.control  0.0
8     classification.control  0.0
9        recognition.control  0.0

R2effect = SScontrast/SStotal = 4594/(15500+5680) = 0.217

interaction contrast with emmeans

F = t2 = 5.3962 = 29.12

F = t2 = 5.3962 = 29.12


