

overview

- Comparisons of nested linear models
- Interpretations of ANOVA tables
- Mean Squares are estimates of variance
- effect size & association strength
- Assumptions of ANOVA & alternatives

nested linear models

Linear Models

• ANOVA fits & compares several nested, linear models

$$P_{ij} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + e_{ij}$$

- $_{-} Y_{ii}$ is score "i" in group "j"
- X_i are a predictor variables (e.g., representing groups/conditions)
- β_i are coefficients adjusted to minimize Σe_{ii}^2

Linear Models

- Linear models are a very broad class of models
- can be used to characterize $\underline{curvilinear}$ associations between Y and X's

$$Y_{ij} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + e_{ij}$$
$$Y_{ij} = \beta_0 + \beta_1 X_1 + \beta_2 X_2^2 + \dots + e_{ij}$$

 $Y_{ij} = \beta_0 + \beta_1 \exp(X_1) + \beta_2 \log(X_2) + \dots + e_{ij}$

Comparing Nested Linear Models

- Compare nested linear models
- models vary in complexity and how well they fit the data
- select model that provides best fit with fewest parameters
- Define "complexity" as number of parameters (i.e., predictor variables)
- Define "goodness-of-fit" as sum of squared residuals
- measure effect of removing free parameters on goodness-of-fit
- if change is small, keep simpler, reduced model
- if change is large, do not remove parameters & keep full model

$\begin{array}{l} \textbf{Best-fitting (least-squares) parameters} \\ (for a 1-way design) \\ \hline \\ \textbf{Nested Linear Models} \\ full model: Y_{ij} = \mu + \alpha_j + e_{ij} \\ reduced model: Y_{ij} = \mu + e_{ij} \\ \hline \\ \textbf{Group effects (alphas)} \\ \textbf{Orefined as difference between group mean & overall mean} \\ & \quad with this definition, alphas MUST sum to zero \\ & \quad often called "sigma" or "sum-to-zero" definition of alphas} \\ \textbf{Orefined as difference between group effects & intercept that yield the same, minimum value of the sum of squared residuals. \\ \hline \end{array}$

Best-fitting (least-squares) parameters(for a 1-way design)Nested Linear Models
full model: $Y_{ij} = \mu + \alpha_j + e_{ij}$ reduced model: $Y_{ij} = \mu + e_{ij}$ • Estimate parameters of models from sample
• which values of μ and α_j minimize Σe_{ij}^2 ? $\sum_j \alpha_j = 0$

R example (mood induction experiment)

	Source	df	Sum Sq	Mean Sq	F value	Pr(>F)
	Group	a-1	SS_B	MS _B	MS_B/MS_W	p
	Residuals	a(n-1)	SS_W	MS_W	_,	*
	Table 1	l: A stand	ard ANOV	VA table for	r a one-way d	esign.
	Table 1 Source	l: A stand	ard ANOV	VA table for Mean Sq	r a one-way de F value	esign. Pr(>F)
Between					v	

ANOVA tables

lm()

options(contrasts=c("contr.sum","contr.poly")) # IMPORTANT!
> # use lm()
> mood.lm <- lm(mood~1+group,data=mood.data)</pre>

> class(mood.lm)
[1] "lm"

> anova(mood.lm)

Analysis of Variance Table Response: mood Df Sum Sq Mean Sq F value Pr(>F) group 2 46.7 23.33 24.2 9.4e-07 *** Residuals 27 26.0 0.96 E.restricted - E.full

ANOVA tables

interpret as changes in goodness of fit in nested models

SS_{group} is change in goodness-offit when alphas are set to zero

Is this change in goodness-of-fit unusual when H0 is true?

Calculate F statistic...

ANOVA tables $F = \frac{(E_R - E_F)/(\mathrm{df}_R - \mathrm{df}_F)}{E_F/\mathrm{df}_F}$ Im()		ANOVA tables $F = \frac{(E_R - E_F)/(\mathrm{df}_R - \mathrm{df}_F)}{E_F/\mathrm{df}_F}$ Im()			
<pre>options(contrasts=c("contr.sum","contr.poly")) # IMPORTANT! > # use lm() > mood.lm <- lm(mood~1+group,data=mood.data) > class(mood.lm) [1] "lm"</pre>		<pre>options(contrasts=c("contr.sum","contr.poly")) # IMPORTANT! > # use lm() > mood.lm <- lm(mood~1+group,data=mood.data) > class(mood.lm) [1] "lm"</pre>			
<pre>> anova(mood.lm) Analysis of Variance Table Response: mood</pre>	df _{full} = df _{resid} = N - 1 - df _{group} = 27	<pre>> anova(mood.lm)</pre>			

ANOVA	tables					
_						
	Source	df	Sum Sq	Mean Sq	F value	$\Pr(>F)$
-	Group	a-1	SS_B	MS_B	MS_B/MS_W	p
	Residuals	a(n-1)	SS_{W}	MS_W		
-	Table 1	: A standa			a one-way de $= SS_W$	
E_{F} and E_{R} are Σ	Ee_{ij}^2 for full &	reduced mo	odels			

▶ amount of variation depends on error variance & sample size

ANOVA tables MS_{group} = n x (between-group variance) > anova(mood.lm) Analysis of Variance Table Response: mood Df Sum Sq Mean Sq F value Pr(>F) 2 46.7 23.33 24.2 <.001 group Residuals 27 26.0 0.96 > n <- 10 > (groupMeans <- with(mood.data,tapply(mood,group,mean)))</pre> neutral pleasant unpleasant 4 6 3 > n * var(groupMeans) [1] 23.33333

Estimates of Population Error Variance

when H0 is FALSE variation among groups caused by SAMPLING VARIANCE plus group effects

- if H0 is false: $\alpha_i \neq 0$ (for at least group)
- between-group variance is caused by sampling variation & alpha's

$$\hat{\sigma}_{\bar{Y}}^2 = \frac{\hat{\sigma}_e^2}{n} + \frac{\Sigma \alpha_j^2}{a-1}$$

$$E(MS_B) = n \times \sigma_{\mu}^2 = \sigma_e^2 + \frac{n2\alpha_j}{a-1}$$

• and we expect $MS_B > MS_W$ as $\Sigma \alpha_i^2$ increases, and $F \gg 1$

 $n\Sigma \alpha^2$

• evaluate with 1-tailed tests... look for unusually large values of F

ANOVA tables

MS values are estimates of variance

> anova(mood.lm)

Analysis of Variance Table Response: mood Df Sum Sq Mean Sq F value Pr(>F) group 2 46.7 23.33 24.2 9.4e-07 *** Residuals 27 26.0 0.96

When H0 is true:

$$\begin{split} MS_{resid} \& MS_{group} \mbox{ are independent estimates of VAR(error)} \\ F = MS_{group}/MS_{resid} \approx 1 \mbox{ (distributed as F(2,27))} \end{split}$$

When H1 is true:

$$\begin{split} \mathsf{MS}_{\mathsf{resid}} &= \mathsf{estimate of VAR}(\mathsf{error}) \\ \mathsf{MS}_{\mathsf{group}} &= \mathsf{estimate of VAR}(\mathsf{error}) + [\mathsf{positive number that depends on } \alpha's] \\ \mathsf{F} &= \mathsf{MS}_{\mathsf{group}}/\mathsf{MS}_{\mathsf{resid}} >> 1 \end{split}$$

Assumptions of ANOVA

- The scores must be statistically independent of each other
- Population of scores, Y, distributed normally within each group
 equivalent to assuming that error follows normal distribution
- Error variance is constant across groups
- If assumptions are met, F statistic follows F distribution
- if they are not met, F statistic does not follow F distribution

Non-normality & non-constant variance

- ANOVA reasonably robust to deviations from normality
- if deviations are similar in all groups
- less robust to deviations that differ across groups
- e.g., positive skew in 1 group and negative skew in others
- robustness also declines if n is not equal across groups
- ANOVA is reasonably robust to 3-4 fold differences in variances
- if Y's normally distributed and equal n per group

Tests for non-normality

- Kolmogorov-Smirnov test: ks.test()
- Shapiro-Wilk's test: shapiro.test()
- Both tests have low power, though shapiro.test is better
- to compensate, could use tests with alpha = 0.10

shapiro.test(residuals(mood.full))

H0: residuals are distributed normally

```
##
## Shapiro-Wilk normality test
```

```
##
## data: residuals(mood.full)
```

```
## W = 0.85, p-value = 5e-04
```

Bartlett.test

test for homogeneity of variance

```
bartlett.test(mood~group, data=mood.data)
bartlett.test(mood.data$mood.mood.data$group)
##
## Bartlett test of homogeneity of variances
##
## data: mood.data$mood and mood.data$group
## Bartlett's K-squared = 2.6, df = 2, p-value
## = 0.3
HO: variance is constant across groups
( also see leveneTest in car package )
```

Alternative Analyses

- perform ANOVA on transformed data
- square-root, log, & inverse-sine transformations common
- conclusions apply to transformed data
- Welch correction for non-constant variance
- oneway.test () [N.B. Assumes normality]

oneway.test(mood~group,data=mood.data)

##

```
## One-way analysis of means (not assuming
## equal variances)
##
## data: mood and group
## F = 18, num df = 2, denom df = 17, p-value =
## 6e-05
```

Alternative Analyses

- Kruskal-Wallis test for group differences [kruskal.test()]
- does not assume normality or constant variance
- HO: the means of ranked data are the same in each group
- if distributions for each group have same shape (not necessarily normal), then KW test evaluates null hypothesis that group MEDIANS are equal

<pre>kruskal.test(mood~group,data=mood.data)</pre>
##
Kruskal-Wallis rank sum test
##
data: mood by group
<pre>## Kruskal-Wallis chi-squared = 19, df = 2,</pre>
p-value = 7e-05