PSYCH 710

Comparing Means in a 1-Way Design
Sept, 2023

Prof. Patrick Bennett

1-way ANOVA

overview

- Comparisons of nested linear models
- Interpretations of ANOVA tables
- Mean Squares are estimates of variance
- effect size \& association strength
- Assumptions of ANOVA \& alternatives

1-way ANOVA

Linear Models

- ANOVA fits \& compares several nested, linear models
- $Y_{i j}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+e_{i j}$
_ $Y_{i j}$ is score " i " in group " j "
- X_{i} are a predictor variables (e.g., representing groups/conditions)
- β_{i} are coefficients adjusted to minimize $\Sigma e_{i j}^{2}$

Linear Models

- Linear models are a very broad class of models
- can be used to characterize curvilinear associations between Y and X 's
- $Y_{i j}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+e_{i j}$
$-Y_{i j}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}^{2}+\cdots+e_{i j}$
$-Y_{i j}=\beta_{0}+\beta_{1} \exp \left(X_{1}\right)+\beta_{2} \log \left(X_{2}\right)+\cdots+e_{i j}$

Linear Models

include linear regression \& multiple regression

Linear Models

Least-squares estimate of model parameters

$$
Y_{i j}=\hat{Y}_{i} \text { predicted score } \beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}+e_{\text {residual }}^{e_{i j}}
$$

$e_{i j}=Y_{i j}-\hat{Y}_{i j}$ residual $=$ difference between observed $\mathbb{\&}$ predicted scores
${ }_{i j}^{2}$ Least-squares measure of goodness-of-fit: sum of squared-residuals

ANOVA models are fit using the criterion of least-squares

Comparing Nested Linear Models

- Compare nested linear models
- models vary in complexity and how well they fit the data
- select model that provides best fit with fewest parameters
- Define "complexity" as number of parameters (i.e., predictor variables)
- Define "goodness-of-fit" as sum of squared residuals
- measure effect of removing free parameters on goodness-of-fit
- if change is small, keep simpler, reduced model
- if change is large, do not remove parameters \& keep full model

Best-fitting (least-squares) parameters

(for a 1-way design)

```
Nested Linear Model
    full model: }\mp@subsup{Y}{ij}{}=\mu+\mp@subsup{\alpha}{j}{}+\mp@subsup{e}{ij}{
reduced model: }\mp@subsup{Y}{ij}{}=\mu+\mp@subsup{e}{ij}{
```

Group effects (alphas)

- Defined as difference between group mean \& overall mean
 - with this definition, alphas MUST sum to zero
 - often called "sigma" or "sum-to-zero" definition of alphas
- There are other definitions of group effects \& intercept that yield
the same, minimum value of the sum of squared residuals.

Best-fitting (least-squares) parameters

(for a 1-way design)

$$
\begin{aligned}
& \text { Full Model: } Y_{i j}=\mu+\alpha_{j}+e_{i j} \\
& \qquad \begin{array}{ll}
\mu=\bar{Y}_{u}=\sum_{j=1}^{a} \bar{Y}_{j} / a & \begin{array}{l}
\text { unweighted mean of } \\
\text { group means }
\end{array} \\
\hat{\alpha}_{j}=\bar{Y}_{j}-\bar{Y}_{u} & \begin{array}{l}
\text { difference between group } \\
\text { \& unweighted means }
\end{array} \sum_{j} \alpha_{j}=0
\end{array}
\end{aligned}
$$

Reduced Model: $Y_{i j}=\mu+e_{i j}$
$\mu=\bar{Y}$

Comparing Full \& Reduced Models

- We expect full model to fit the data better
- Why?
- because it has more free parameters (is more complex)
- adjusting values of alpha is expected to reduce $\Sigma e_{i j}^{2}$
- even when true values of alphas in population are zero
- H0: $\alpha_{j}=0$ (for all j's) $\quad \mathrm{H} 1: \alpha_{j} \neq 0$ (for at least 1 group, j)
- when HO is true, all groups are selected from populations with same mean μ
- variation among \bar{Y}_{j} is due to sampling variation
- reduced model should provide a reasonably good fit to data
- difference between $\Sigma e_{i j}^{2}$ for full \& reduced model should not be unusually large
- Question: is change in $\Sigma e_{i j}^{2}$ unusually large assuming HO is true (and true alphas are 0)?

Measure of relative goodness-of-fit

$$
F=\frac{\left(E_{R}-E_{F}\right) /\left(\mathrm{df}_{R}-\mathrm{df}_{F}\right)}{E_{F} / \mathrm{df}_{F}} \quad \begin{array}{ll}
\mathrm{E}_{\mathrm{R}}: \Sigma e_{i j}^{2} \text { for reduced model } \\
& \mathrm{E}_{\mathrm{F}:} \Sigma e_{i j}^{2} \text { for full model } \\
& \mathrm{df}_{\mathrm{R}}: \text { degrees-of-freedom reduced model } \\
& \mathrm{df}_{\mathrm{F}}: \text { degrees-of-freedom full model }
\end{array}
$$

$\mathrm{df}=\mathrm{N}$ - (the number of estimated parameters)
$d f_{R}=N-1$
$\mathrm{df}_{\mathrm{F}}=\mathrm{N}-\mathrm{a}[\mathrm{N}=$ total number scores; $\mathrm{a}=$ number of groups]

- $\left(\mathrm{df}_{\mathrm{R}}-\mathrm{df}_{\mathrm{F}}\right)=(\mathrm{a}-1)=$ change in number of free parameters in full \& reduced models

F distribution when HO is true

$F=\frac{\left(E_{R}-E_{F}\right) /\left(\mathrm{df}_{R}-\mathrm{df}_{F}\right)}{E_{F} / \mathrm{df}_{F}}$

$$
\begin{array}{lc}
H 0: & \alpha_{1}=\alpha_{2}=\cdots=\alpha_{a}=0 \\
H 1: & \alpha_{j} \neq 0
\end{array}
$$

When HO is true, F statistic follows F distribution with $\left(\mathrm{df}_{\mathrm{R}}-\mathrm{df}_{\mathrm{F}}\right) \&\left(\mathrm{df}_{\mathrm{F}}\right)$ degrees of freedom

Probability density functions for F

R example (mood induction experiment)

mood induction experiment

```
library(sciplot)
> par(mfrow=c(1,1),cex=1.5)
with(data=mood.data,
    bargraph.CI(x.factor=group,
            response=mood,
            main="Mood Data") )
            Mood Data
```


Comparison of full \& restricted models

> \# load data:
> load(file=url("http://pnb.mcmaster.ca/bennett/psy710/datasets/mood_data.rda"))
> \# fit models:
$>$ mood.full <- lm(mood~1+group, data=mood.data)
$>$ mood.restricted <- lm(mood~1,data=mood.data)

Comparison of full \& restricted models

> \# extract residuals:
$>(E . f u l l<-s u m(r e s i d u a l s(m o o d . f u l l) \wedge 2))$
[1] 26
> (E.restricted<-sum(residuals(mood.restricted)^2))
[1] 72.667
(E.restricted-E.full)
[1] 46.667
$>$ (df.full<-mood.full\$df.residual)

$$
F=\frac{\left(E_{R}-E_{F}\right) /\left(\mathrm{df}_{R}-\mathrm{df}_{F}\right)}{E_{F} / \mathrm{df}_{F}}
$$

(df.restricted<-mood.restricted\$df.residual)
[1] 29
> \# compare SSresids with F test:
> (F <- ((E.restricted-E.full)/(df.restricted-df.full)/(E.full/df.full)))
[1] 24.231
> (p.value <- 1-pf(F,df1=(df.restricted-df.full),df2=df.full))
[1] 9.4214e-07

ANOVA tables

ANOVA tables

Source	df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$
Group	$a-1$	SS_{B}	MS_{B}	$\mathrm{MS}_{B} / \mathrm{MS}_{W}$	p
Residuals	$a(n-1)$	SS_{W}	MS_{W}		

Table 1: A standard ANOVA table for a one-way design.

Source	df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$	
Between	Group	$a-1$	SS_{B}	MS_{B}	$\mathrm{MS}_{B} / \mathrm{MS}_{W}$	p
Within	Residuals	$a(n-1)$	SS_{W}	MS_{W}		

Table 1: A standard ANOVA table for a one-way design.

ANOVA tables

Im()

options(contrasts=c("contr.sum", "contr.poly")) \# IMPORTANT
> \# use lm()
$>$ mood. $1 \mathrm{~lm}<-\operatorname{lm}(\operatorname{mood} \sim 1+$ group,data=mood.data)
$>\operatorname{class}(\operatorname{mood} . l m)$
[1] "lm"
> anova(mood.lm)
Analysis of Variance Table
Response: mood
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
group $2423.33 \quad 24.29 .4 \mathrm{e}-07^{* *}$
Residuals $27 \quad 26.0 \quad 0.96$
E.restricted - E.full

ANOVA tables

Im()

options(contrasts=c("contr.sum","contr.poly")) \# IMPORTANT
> \# use $\operatorname{lm}()$
$>$ mood. lm <- $\operatorname{lm}(\operatorname{mood} \sim 1+$ group, data=mood.data)
> class(mood.lm)
[1] "lm"
> anova(mood.lm)
Analysis of Variance Table
Response: mood
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{lllll}\text { group } & 2 & 46.7 & 23.33 & 24.2 \\ \text { g.4e-07 *** }\end{array}$ $\begin{array}{lll}\text { group } \\ \text { Residuals } 27 \quad 26.0 & 0.96\end{array}$
E.full

ANOVA tables

interpret as changes in goodness of fit in nested models
> anova(mood.lm)
Analysis of Variance Table
Response: mood
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{llll}\text { group } 23 & 46.7 & 23.33 & 24.29 .4 e-07^{* * *}\end{array}$
$\begin{array}{lll}\text { Residuals } 27 \quad 26.0 & 0.96\end{array}$
$\mathrm{SS}_{\text {group }}$ is change in goodness-offit when alphas are set to zero

Is this change in goodness-of-fit unusual when HO is true?

Calculate F statistic.

ANOVA tables $\left.\quad F=\frac{\left(E_{R}-E_{F}\right) /\left(\mathrm{df}_{f}-\mathrm{df}\right.}{F}\right)$

$\operatorname{Im}()$
options(contrasts=c("contr.sum", "contr.poly")) \# IMPORTANT!
> \# use lm()
> mood. lm <- $\operatorname{lm}(\operatorname{mood} \sim 1+$ group, data=mood.data)

```
> class(mood.lm)
```

[1] "lm"
> anova(mood.lm)
Analysis of Variance Table
Response: mood
$\begin{array}{lrrrrrr} & \text { Df Sum Sq } & \text { Mean Sq F value } & \operatorname{Pr}(>F) \\ \text { group } & 2 & 46.7 & 23.33 & 24.2 & 9.4 \mathrm{e}-07 & * * * \\ \text { Residuals } & 27 & 26.0 & 0.96 & & \end{array}$

$$
\begin{aligned}
& \mathrm{df}_{\text {restricted }}=\mathrm{df}_{\text {total }}=\mathrm{N}-1=29 \\
& d f_{\text {group }}=\Delta \mathrm{df}=(\mathrm{a}-1)=2 \\
& d f_{\text {full }}=\mathrm{df} \mathrm{f}_{\text {resid }}=\mathrm{N}-1-\mathrm{df} \text { group }=27
\end{aligned}
$$

ANOVA tables $\quad F=\frac{\left(E_{R}-E_{F}\right) /\left(\mathrm{df}_{f^{\prime}}-\mathrm{df}_{F}\right)}{E_{F} / \mathrm{d}_{F}}$
 Im()

options(contrasts=c("contr.sum","contr.poly")) \# IMPORTANT!
> \# use lm()
> mood. lm <- $\operatorname{lm}(\operatorname{mood} \sim 1+$ group, data=mood.data)
> class(mood.lm)
[1] "lm"
> anova(mood.lm)

$$
\mathrm{MS}=\frac{\mathrm{SS}}{\mathrm{df}}
$$

Analysis of Variance Table
Response: mood

	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$	
group	2	46.7	23.33	24.2	$9.4 \mathrm{e}-07$	$* * *$
Residuals	27	26.0	0.96			

ANOVA tables

Im()

$$
F=\frac{\left(E_{R}-E_{F}\right) /\left(\mathrm{df}_{R}-\mathrm{df}_{F}\right)}{E_{F} / \mathrm{df}_{F}}
$$

options(contrasts=c("contr.sum", "contr.poly")) \# IMPORTANT!
> \# use lm()
$>$ mood.lm <- lm(mood~1+group,data=mood.data)
$>$ anova(mood.lm)
Analysis of Variance Table
Response: mood
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$

group	2	46.7	23.33	24.2	$9.4 \mathrm{e}-07$	***

$\begin{array}{lll}\text { Residuals } 27 \quad 26.0 & 0.96\end{array}$

- Our observed F is unusual when H 0 is true.
- Reject HO in favor of $\mathrm{H} 1 \alpha_{j} \neq 0$ for at least one group, j

ANOVA tables

$$
F=\frac{\left(E_{R}-E_{F}\right) /\left(\mathrm{df}_{R}-\mathrm{df}_{F}\right)}{E_{F} \mathrm{df}_{F}}
$$

aov()
options(contrasts=c("contr.sum","contr.poly")) \# IMPORTANT!
> \# use aov()
> mood.aov <- aov(mood~1+group,data=mood.data)
> class(mood.aov)
[1] "aov" "lm"
> anova(mood.aov)
Analysis of Variance Table
Response: mood
Df Sum Sa Mean Sq value $\operatorname{Pr}(>F)$
$\begin{array}{lrrrrrr}\text { group } & 2 & 46.7 & 23.33 & 24.2 & 9.4 \mathrm{e}-07 & * * *\end{array}$
Residuals $27 \quad 26$.
.96

ANOVA tables

Source	df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$
Group	$a-1$	SS_{B}	MS_{B}	$\mathrm{MS}_{B} / \mathrm{MS}_{W}$	p
Residuals	$a(n-1)$	$\mathrm{SS}_{W_{k}}$	MS_{W}		

Table 1: A standard ANOVA table for a one-way design.

$$
E_{F}=\mathrm{SS}_{W}
$$

E_{F} and E_{R} are $\sum e_{i j}^{2}$ for full \& reduced models

ANOVA tables

Source	df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$
Group	$a-1$	SS_{B}	MS_{B}	$\mathrm{MS}_{B} / \mathrm{MS}_{W}$	p
Residuals	$a(n-1)$	SS_{W}	MS_{W}		

Table 1: A standard ANOVA table for a one-way design.

ANOVA tables

Source	df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$
Group	$a-1$	SS_{B}	MS_{B}	$\mathrm{MS}_{B} / \mathrm{MS}_{W}$	p
Residuals	$a(n-1)$	SS_{W}	MS_{W}		

Table 1: A standard ANOVA table for a one-way design.

$$
E_{R}=\mathrm{SS}_{B}+\mathrm{SS}_{W}=\mathrm{SS}_{\text {Total }}
$$

E_{F} and E_{R} are $\sum e_{i j}^{2}$ for full \& reduced models

ANOVA tables

$$
\begin{aligned}
& E_{R}-E_{F}=\mathrm{SS}_{\text {Total }}-\mathrm{SS}_{W}=\mathrm{SS}_{B} \\
& \begin{array}{lccccc}
\hline \text { Source } & \text { df } & \text { Sum Sq } & \text { Mean Sq } & \text { F value } & \operatorname{Pr}(>\mathrm{F}) \\
\hline \text { Group } & a-1 & \mathrm{SS}_{B} & \mathrm{MS}_{B} & \mathrm{MS}_{B} / \mathrm{MS}_{W} & p \\
\text { Residuals } & a(n-1) & \mathrm{SS}_{W} & \mathrm{MS}_{W} & & \\
\hline
\end{array}
\end{aligned}
$$

Table 1: A standard ANOVA table for a one-way design.

$$
E_{R}=\mathrm{SS}_{B}+\mathrm{SS}_{W}=\mathrm{SS}_{\text {Total }}
$$

E_{F} and E_{R} are $\Sigma e_{i j}^{2}$ for full \& reduced models

ANOVA tables

$$
E_{R}-E_{F}=\mathrm{SS}_{\text {Total }}-\mathrm{SS}_{W}=\mathrm{SS}_{B}
$$

Source	df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>\mathrm{F})$
Group	$a-1$	SS_{B}	MS_{B}	$\mathrm{MS}_{B} / \mathrm{MS}_{W}$	p
Residuals	$a(n-1)$	SS_{W}	MS_{W}		

Table 1: A standard ANOVA table for a one-way design.

$$
\begin{array}{|l|l}
E_{R}=\mathrm{SS}_{B}+\mathrm{SS}_{W}=\mathrm{SS}_{\text {Total }} & E_{F}=\mathrm{SS}_{W} \\
& M S=\frac{S S}{d f} \\
\mathrm{E}_{\mathrm{F}} \text { and } \mathrm{E}_{\mathrm{R}} \text { are } \sum e_{i j}^{2} \text { for full \& reduced models } &
\end{array}
$$

\square

MS values are estimates of variance

ANOVA tables

$\mathrm{MS}_{\text {resid }}=$ AVG(within-group variance)
> anova(mood.lm)
Analysis of Variance Table
Response: mood
$\begin{array}{lrrrrr} & \text { Df } & \text { Sum Sq Mean Sq } F \text { value } & \operatorname{Pr}(>F) \\ \text { group } & 2 & 46.7 & 23.33 & 24.2 & <.001\end{array}$ $\begin{array}{llll}\text { Residuals } & 27 & 26.0 & 0.96\end{array}$
> \# mean of group variances:
> mean(with(mood.data,

+ tapply(mood,group, var)))
[1] 0.96296

Estimates of Population Error Variance

$\mathrm{MS}_{W}=\frac{E_{F}}{\mathrm{df}_{F}}=\hat{\sigma}_{e}^{2}$
$M S_{w}$ is weighted average of within-group variances

$$
\sqrt{\frac{E_{F}}{d f_{F}}}=\hat{\sigma}_{e}
$$

Residual Standard Error

ANOVA tables

$\mathrm{MS}_{\text {group }}=\mathrm{n} \times$ (between-group variance)

> anova(mood.lm)

Analysis of Variance Table
Response: mood
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{llllll} & \\ \text { Residuals } 27 & 26.7 & 23.33 & 24.2 & <.001\end{array}$
> $\mathrm{n}<-10$
> (groupMeans <- with(mood.data,tapply(mood,group,mean))) neutral pleasant unpleasant
$>n * \operatorname{var}($ groupMeans)
[1] 23.33333

$\mathrm{MS}_{\text {Group }}$ is the sum of 2 components

- between-group variance has 2 sources

Estimates of Population Error Variance

when HO is FALSE variation among groups caused by SAMPLING VARIANCE plus group effects

- if HO is false: $\alpha_{j} \neq 0$ (for at least group)
- between-group variance is caused by sampling variation \& alpha's
$-\hat{\sigma}_{\bar{Y}}^{2}=\frac{\hat{\sigma}_{e}^{2}}{n}+\frac{\Sigma \alpha_{j}^{2}}{a-1}$
$-\mathrm{E}\left(\mathrm{MS}_{\mathrm{B}}\right)=n \times \sigma_{\mu}^{2}=\sigma_{e}^{2}+\frac{n \Sigma \alpha_{j}^{2}}{a-1}$
- and we expect $\mathrm{MS}_{B}>\mathrm{MS}_{W}$ as $\Sigma \alpha_{j}^{2}$ increases, and $F \gg 1$
- evaluate with 1-tailed tests... look for unusually large values of F

Estimates of Population Error Variance

when HO is TRUE variation among group means is pure SAMPLING VARIANCE

- recall that $\mathrm{MS}_{B}=n \times \hat{\sigma}_{\bar{Y}}^{2}$
- if HO is true: $\alpha_{j}=0$
- between-group variance is caused only by sampling variation

$$
-\hat{\sigma}_{\bar{Y}}^{2}=\frac{\hat{\sigma}_{e}^{2}}{n} \text {, so } \hat{\sigma}_{e}^{2}=n \times \hat{\sigma}_{\bar{Y}}^{2}
$$

- when HO is true
$-\mathrm{MS}_{B}=\hat{\sigma}_{e}^{2}$ and $\mathrm{MS}_{\mathrm{w}} \& \mathrm{MS}_{\mathrm{B}}$ are independent estimates of σ_{e}^{2}
- in the long run, averages of $M S_{w}$ and $M S_{B}$ equal σ_{e}^{2} when HO is true, and $F=\frac{\mathrm{MS}_{B}}{\mathrm{MS}_{W}}$ is a random variable that follows the so-called F distribution

Estimates of Population Error Variance

value of MS_{B} reflects error variance and group effects

$$
\alpha_{j}=\mu_{j}-\mu_{G}
$$

$$
\begin{aligned}
E\left(\mathrm{MS}_{W}\right) & =E\left(\frac{E_{F}}{\mathrm{df}_{F}}\right)=\sigma_{e}^{2} \\
E\left(\mathrm{MS}_{B}\right) & =\sigma_{e}^{2}+\frac{\sum_{j} n_{j} \alpha_{j}^{2}}{a-1}
\end{aligned}
$$

Grand Mean

$$
\begin{aligned}
& \text { When } \mathrm{H0} \text { is true } \& a_{\mathrm{j}}=0 \\
& \begin{array}{cc}
E\left(\mathrm{MS}_{B}\right)=E\left(\mathrm{MS}_{W}\right) & E\left(\mathrm{MS}_{B}\right)>E\left(\mathrm{MS}_{W}\right) \\
F \approx 1 & F>1
\end{array}
\end{aligned}
$$

ANOVA tables

MS values are estimates of variance
> anova(mood.lm)
Analysis of Variance Table
Response: mood
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{lrrrrr}\text { group } & 2 & 46.7 & 23.33 & 24.2 & 9.4 \mathrm{e}-07^{* * *}\end{array}$
Residuals $27 \quad 26.0 \quad 0.96$

When H0 is true:

$M S_{\text {resid }} \& M S_{\text {group }}$ are independent estimates of VAR(error
$\mathrm{F}=\mathrm{MS}$ group $/ \mathrm{MS}_{\text {resid }} \approx 1$ (distributed as $\mathrm{F}(2,27)$)

When H 1 is true:

$\mathrm{MS}_{\text {resid }}=$ estimate of VAR(error)
$\mathrm{MS}_{\text {group }}=$ estimate of VAR(error) + [positive number that depends on a^{\prime} s] $\mathrm{F}=\mathrm{MS}_{\text {group }} / \mathrm{MS}_{\text {resid }} \gg 1$

ANOVA tables
Using F to test null hypothesis

When HO is true:

$M S_{\text {resid }} \& M S_{\text {group }}$ are independent estimates of VAR(error) $F=M S_{\text {group }} / M S_{\text {resid }} \approx 1$ (distributed as $F(2,27)$)

ANOVA tables

interpretations of $\mathrm{H} 0 \& \mathrm{H} 1$
anova(mood.lm)
Analysis of Variance Table
Response: mood
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$ $\begin{array}{lll}\text { roup } 236.7 & 23.33\end{array}$ Residuals $27 \quad 26.0 \quad 0.96$

HO: all group effects (alpha's) are zero H1: not all group effects (alpha's) are zero

HO: all populations have the same mean H1: not all populations have the same mean

Assuming all of the effects are zero, is the change in goodness of fit (SS error) unusually large?

Assuming all of the effects are zero, is the variation among group means unusually large?

effect size (Cohen's f)

$$
d_{i}=\frac{\left(\mu_{1}-\mu_{G}\right)}{\sigma_{e}} \quad f=\sqrt{\frac{\sum_{i} d_{i}^{2}}{3}}
$$

> library(effectsize)
$>$ cohens_f(mood.lm)

> cohens_f_squared(mood.lm)

Parameter | Cohen's f2 । 90\% CI
group | 1.79 | [0.77, 3.08]

association strength

proportion of variation that is accounted for by group

> summary(mood.lm)					
Coefficients:					
Estimate Std. Error t					
(Intercept)	4.333	0.179	24.19	< .000	
group1	-0.333	0.253	-1.32		
group2	1.667	0.253	6.58	.000	
Residual standard error: 0.981 on 27 df					
Multiple R^2: 0.642, Adjusted R^2: 0.616					
F: 24.2 on 2 and 27 DF, p-value: 9.42e-07					
> eta_squared(mood.lm)					
Parameter I	Eta2	90\% CI			
$\begin{array}{ll}\text {---------------------------- } \\ \text { group } & 0.64 \text { \| } 0.43,0.75]\end{array} \quad \eta^{2}=R^{2}$					
> omega_squared(mood.lm)					
Parameter \| Omega2					
group 1 0.61 [0.39, 0.73]					

- $\operatorname{VAR}($ residuals $)=0.896$
- VAR(original scores) $=2.506$
- so we accounted 64\%, of VAR(original scores)

association strength

proportion of variance accounted for by group

$$
\begin{aligned}
& \text { adjusted } \mathrm{R} \text {-squared } \\
& \tilde{R}^{2} \quad \omega^{2}=\frac{\sigma_{\alpha}^{2}}{\sigma_{\alpha}^{2}+\sigma_{e}^{2}} \\
& \begin{array}{l}
\omega^{2}=0.01 \\
\omega^{2}=0.06 \text { is a small association } \\
\omega^{2}=0.14 \text { or larger is a a large association }
\end{array}
\end{aligned}
$$

Assumptions of ANOVA

- The scores must be statistically independent of each other
- Population of scores, Y, distributed normally within each group
- equivalent to assuming that error follows normal distribution
- Error variance is constant across groups
- If assumptions are met, F statistic follows F distribution
- if they are not met, F statistic does not follow F distribution

Non-normality \& non-constant variance

- ANOVA reasonably robust to deviations from normality
- if deviations are similar in all groups
- less robust to deviations that differ across groups
- e.g., positive skew in 1 group and negative skew in others
- robustness also declines if n is not equal across groups
- ANOVA is reasonably robust to 3-4 fold differences in variances
- if Y's normally distributed and equal n per group

Bartlett.test

test for homogeneity of variance

```
bartlett.test(mood~group, data=mood.data)
bartlett.test(mood.data$mood,mood.data$group)
##
## Bartlett test of homogeneity of variances
##
## data: mood.data$mood and mood.data$group
## Bartlett's K-squared = 2.6, df = 2, p-value
## = 0.3
HO: variance is constant across groups
( also see leveneTest in car package )
```


Alternative Analyses

- perform ANOVA on transformed data
- square-root, log, \& inverse-sine transformations common
- conclusions apply to transformed data
- Welch correction for non-constant variance
- oneway.test () [N.B. Assumes normality]
oneway.test(mood^group, data=mood.data)
\#\#
\#\# One-way analysis of means (not assuming
\#\# equal variances)
\#\#
\#\# data: mood and group
\#\# $\mathrm{F}=18$, num $\mathrm{df}=2$, denom $\mathrm{df}=17$, p -value $=$ \#\# 6e-05

Alternative Analyses

- Kruskal-Wallis test for group differences [kruskal.test()]
- does not assume normality or constant variance
- HO: the means of ranked data are the same in each group
- if distributions for each group have same shape (not necessarily normal), then KW test evaluates null hypothesis that group MEDIANS are equal

```
kruskal.test(mood~group,data=mood.data)
##
## Kruskal-Wallis rank sum test
##
## data: mood by group
## Kruskal-Wallis chi-squared = 19, df = 2,
## p-value = 7e-05
```

