PSYCH 710
Comparing Means in a 1-Way Design

Sept, 2023 1-way ANOVA
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1-way ANOVA

overview

« Comparisons of nested linear models
« Interpretations of ANOVA tables .
« Mean Squares are estimates of variance nested Imear models
« effect size & association strength

« Assumptions of ANOVA & alternatives




Linear Models

« ANOVA fits & compares several nested, linear models
Yy =ho+ X+ X+ e

“ | ” wn

- Yij is score in group “j
- X are a predictor variables (e.g., representing groups/conditions)

. f; are coefficients adjusted to minimize Ze;

Linear Models

« Linear models are a very broad class of models

« can be used to characterize curvilinear associations between Y and X’s

- Y
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Linear Models

include linear regression & multiple regression

Yi=By+(ByxX) ] Yi=B0+(B1xX)+(BzxX2)
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Linear Models

Least-squares estimate of model parameters

€jj

Se?

)A/i predicted score
Y= bt BXi + X+ -+ X, + e

intercept residual

=Y;—Y; residual = difference between observed & predicted scores

;i Least-squares measure of goodness-of-fit: sum of squared-residuals

ANOVA models are fit using the criterion of least-squares




Comparing Nested Linear Models

« Compare nested linear models

- models vary in complexity and how well they fit the data

- select model that provides best fit with fewest parameters
« Define “complexity” as number of parameters (i.e., predictor variables)
« Define “goodness-of-fit” as sum of squared residuals

- measure effect of removing free parameters on goodness-of-fit

- if change is small, keep simpler, reduced model

- if change is large, do not remove parameters & keep full model

Best-fitting (least-squares) parameters

( for a 1-way design )

Nested Linear Models
fullmodel: Y;, = p+a;+ e
reduced model: Y;; = 4+ e

Group effects (alphas)
o Defined as difference between group mean & overall mean

- with this definition, alphas MUST sum to zero Z
- often called “sigma” or “sum-to-zero” definition of alphas

o There are other definitions of group effects & intercept that yield
the same, minimum value of the sum of squared residuals.

Best-fitting (least-squares) parameters

( for a 1-way design )

Nested Linear Models

fullmodel: Y;;, = pu+ ;4 ey
reduced model: Yj; = 4 ey
o Estimate parameters of models from sample z 0
a. =
J
o which values of ;2 and a; minimize Ze; ? j

Best-fitting (least-squares) parameters

( for a 1-way design )

FullModel: ¥;; = u+ a; + ¢;

group means

a
p=7Y, = Z yj/a unweighted mean of
j=1

o > difference between group 2 a. =
@ Y/ Yu & unweighted means ~
J

Reduced Model: Y, = p + ¢;;

—v intercept equals
K= the grand mean




Comparing Full & Reduced Models

« We expect full model to fit the data better
« Why?
- because it has more free parameters (is more complex)
_ adjusting values of alpha is expected to reduce Eel%
- even when true values of alphas in population are zero
« HO: g = 0 (for all j’s) Hl: q; # 0 (for at least 1 group, j)
- when HO is true, all groups are selected from populations with same mean u
_ variation among Y/ is due to sampling variation
- reduced model should provide a reasonably good fit to data

_ difference between Zel% for full & reduced model should not be unusually large

. Question: is change in Ze[jz. unusually large assuming HO is true (and true alphas are 0)?

Measure of relative goodness-of-fit

Er: Zeijz» for reduced model

(Bn — Bp)/(din —dtr)
Ep/dfp Er: Zej; for full model

F:

dfg: degrees-of-freedom reduced model

dfe: degrees-of-freedom full model

«df = N - (the number of estimated parameters)

«dfg=N-1

+dfe = N -a [N = total number scores; a = number of groups]

« (dfg - dff) = (a-1) = change in number of free parameters in full & reduced models

F distribution when HO is true

Probability density functions for F

o (Br— Bp)/(di - diy) S
- EF/dfF - |<— df(10,600)

H): aj=ag=---=0a,=0 E;D

H1: a; #0 £

When HO is true, F statistic follows F distribution

with (dfg-dff) & (dfe) degrees of freedom s |

R example (mood induction experiment)




mood induction experiment

> library(sciplot) > summary(mood.data)

> par(mfrow=c(1,1),cex=1.5) group mood
> with(data=mood.data, neutral :10  Min. 1.00
bargraph.CI(x.factor=group, pleasant :10 1st Qu.:3.25
response=mood, unpleasant:10  Median :4.00
main="Mood Data") ) Mean :4.33
3rd Qu.:5.00
Max . 7.00
Mood Data > # grand mean
© - > mean(mood. data$mood)
© [1] 4.3333
g - == > # group means
g - = > with(mood.data,tapply(mood,group,mean))
o neutral pleasant unpleasant
- 4 6 3
neutral pleasant unpleasant > # group SD

> with(mood.data,tapply(mood,group,sd))
neutral pleasant unpleasant
0.66667 1.15470 1.05409

group

Comparison of full & restricted models

# load data:
load(file=url("http://pnb.mcmaster.ca/bennett/psy710/datasets/mood_data.rda"))
# fit models:

mood. full <- 1m(mood~l+group,data=mood.data)

mood.restricted <- 1lm(mood~1,data=mood.data)

V V V|V Vv

Comparison of full & restricted models

> # extract residuals:
> (E.full<-sum(residuals(mood.full)A2))

[1] 26

> (E.restricted<-sum(residuals(mood.restricted)A2))

[1] 72.667

> (E.restricted-E.full)

[1] 46.667 Fo (Er — Ep)/(dfp — dfr)
> (df.full<-mood.full$df.residual) o l?p/(ifp

[1] 27

> (df.restricted<-mood.restricted$df.residual)

[1] 29

# compare SSresids with F test:

> (F <- ( (E.restricted-E.full)/(df.restricted-df.full)/(E.full/df.full) ) )
[1] 24.231

> (p.value <- 1-pf(F,df1=(df.restricted-df.full),df2=df.full) )

[1] 9.4214e-07

ANOVA tables




ANOVA tables

Source df Sum Sq Mean Sq  Fvalue  Pr(>F)

Group a—1 SSp MSpg MSg/MSw P
Residuals a(n—1)  SSy MSw

Table 1: A standard ANOVA table for a one-way design.

Source df Sum Sq Mean Sq  F value  Pr(>F)

Between —Group—— | a — 1 SSgp MSp MSp/MSw D
Within —Restduals— ja(n — 1)  SSy MSw

Table 1: A standard ANOVA table for a one-way design.

ANOVA tables

Im()

options(contrasts=c("contr.sum","contr.poly")) # IMPORTANT!
> # use ImQ
> mood.1lm <- 1lm(mood~1+group,data=mood.data)

> class(mood.1m)
[1] “'l-mll

> anova(mood.1m)
Analysis of Variance Table
Response: mood
Df Sum Sq Mean Sq F value Pr(>F)

group 2 46.7 23.33 24.2 9.4e-Q7 ***
Residuals 27 0.96
E.full

ANOVA tables

Im()

options(contrasts=c("contr.sum","contr.poly")) # IMPORTANT!
> # use ImQ)

> mood.1lm <- 1m(mood~1l+group,data=mood.data)

> class(mood.1m)
[1] “'Lmlv

> anova(mood.1m)
Analysis of Variance Table
Response: mood
Df Sum Sg Mean Sq F value Pr(>F)
group 2 23.33  24.2 9.4e-Q7 ***
Residuals 27 26.0 0.96
E.restricted - E.full

ANOVA tables

interpret as changes in goodness of fit in nested models

> anova(mood.1m)

Analysis of Variance Table

Response: mood SSgroup is change in goodness-of-
Df Sum Sq Mean Sq F value Pr(>F) fit when alphas are set to zero

group 2 23.33 24.2 9.4e-0Q7 ***
Residuals 27 26.0 0.96
Is this change in goodness-of-fit

unusual when HO is true?

Calculate F statistic...




ANOVA tables o (En = Bp)/(dn — dtr)

Ep/dfp
Im() /

options(contrasts=c("contr.sum","contr.poly")) # IMPORTANT!
> # use 1mQ)
> mood.lm <- 1lm(mood~1+group,data=mood.data)

> class(mood.1m)
[1] “‘Lmll

dfrestricted = dftotal = N - 1= 29
dfgroup =Adf = (8'1) =2

> anova(mood.1lm) dftun = dfresia = N - 1 - dfgroup = 27
Analysis of Variance Table
Response: mood

Df Sum Sq Mean Sq F value Pr(>F)

group 2 | 46.7 23.33 24.2 9.4e-07 ***
Residuals| 27 | 26.0 0.96

ANOVA tables o (Br— Er)/(dta — diy)

Ep/dfp
Im() /

options(contrasts=c("contr.sum","contr.poly")) # IMPORTANT!
> # use 1mQ)
> mood.1lm <- 1lm(mood~1+group,data=mood.data)

> class(mood.1m)

[1] “Im" SS

> anova(mood.1m) df
Analysis of Variance Table
Response: mood
Df Sum Sq|Mean Sq |F value Pr(F)
group 2 46.7 24.2 9.4e-Q7 ***
Residuals 27 26.0

ANOVA tables o (En— B/t diy)

Im() Ep/dfp

options(contrasts=c("contr.sum","contr.poly")) # IMPORTANT!
> # use ImQ)
> mood.lm <- 1lm(mood~1+group,data=mood.data)

> class(mood.1m)
[1] “Im"

> anova(mood.1lm)
Analysis of Variance Table
Response: mood

Df Sum Sq Mean Sq F value Pr(>F)
group 2 46.7 23.33 24.2 9.4e-0Q7 **x*
Residuals 27 26.0 0.96

ANOVA tables o (En - B/l — dip)

Im() Ep/dfp

options(contrasts=c("contr.sum","contr.poly")) # IMPORTANT!
> # use ImQ)
> mood.lm <- 1lm(mood~1+group,data=mood.data)
> anova(mood.1m)
Analysis of Variance Table
Response: mood
Df Sum Sq Mean Sq F value Pr(>F)
group 2 46.7 23.33 24.2 9.4e-07 ***
Residuals 27 26.0 0.96

o Our observed F is unusual when HO is true.
eReject HO in favor of H1 o; # ( for at least one group, j




ANOVA tables o (Bn— Er)/(diy — dip)

aov() Ep/dfp

options(contrasts=c("contr.sum","contr.poly")) # IMPORTANT!
> # use aov()

> mood.aov <- aov(mood~l+group,data=mood.data)

> class(mood.aov)
[1] "aov" "lm"

> anova(mood.aov)
Analysis of Variance Table

Response: mood

'Df |Sum Sq|[Mean Sq|F value Pr(>F)
group 2| 46.7 24.2 9.4e-07 ***
Residuals|27)( 26.0 .

ANOVA tables
Source df Sum Sq Mean Sq  F value  Pr(>F)
Group a—1 SSp MSp MSg/MSw P

Residuals a(n—1)  SSw MSw

Table 1: A standard ANOVA table for a one-way design.

ANOVA tables

Source df Sum Sq Mean Sq  F value  Pr(>F)

Group a—1 SSp MSp MSp/MSw P
Residuals  a(n — 1) SSwr_ MSy

Table 1: A standard ANOMIO for a one-way design.
Er = SSw

Er and Er are Zel% for full & reduced models

ANOVA tables
Source df Sum Sq Mean Sq  F value  Pr(>F)
Group a—1 (SSg) MSp MSg/MSy P
Residuals  a(n — 1) ‘SSJ,L MSw

Table 1: A staridard ANON]C for a one-way design.

/ Er = SSw
ER = SSB+SSW = SSTotal

Er and Er are Zel% for full & reduced models




ANOVA tables

ER - EF = SSToml - SSW’ = SSB

Source df Sum Sq Mean Sq  F value  Pr(>F)
Group a—1 SSgs MSp MSg/MSw P
Residuals a(n—1) . SSw MSy

Table 1: A standard ANOVA™table for a one-way design.

Er = SSp+ SSw = SSrotal

Er and Er are Ze; for full & reduced models

ANOVA tables

ER - EF = SSTnta,l - SSW’ = SSB

Source df Sum Sq Mean Sq  Fvalue  Pr(>F)
Group a—1 SSp MSp MSg/MSw P
Residuals  a(n — 1) SSw MSw

Table 1: A staridard ANOVA™ $able¥for a one-way design.
ER = SSB + SSW == SSTotal

_ SS between-group &

MS - within-group variance
df

Er and Eg are Ze; for full & reduced models

ANOVA tables

(Ep — Bp)/(dfg — dfy)  MSp

F= _
Ep/dfy MSy,

ER - EF = SSTutal - SSW' = SSB

Source df Sum Sq Mean Sq  F value  Pr(>F)
Group a—1 SSgp MSg MSp/MSw P
Residuals  a(n — 1) SSwx MSy

Table 1: A stanndard ANOVA™tableMor a one-way design.

Ern = SSw
ER = SSB + SSW == SSTotal
SS
MS =—
af

Er and Er are Zel% for full & reduced models

MS values are estimates of variance




Models g
full: Y, o+ e
reduced: Yj; = p+ej
& =l — Hg

Grand Mean

¢ within-group variation due only to population error variance
* between-group variation due to group EFFECTS and sampling variation

» we expect to find some Between-Group variation even when effects are zero

» amount of variation depends on error variance & sample size

Estimates of Population Error Variance

K1 Hay Hg

EF ~92
\/I w=————=
> df g e

MSw is weighted average
of within-group variances

Br _.
df ‘ '

Residual Standard Error Grand Mean

ANOVA tables

MSresia = AVG(within-group variance)

> anova(mood.1m) H H2 Ko H3
Analysis of Variance Table
Response: mood

Df Sum Sq Mean Sq F value Pr(>F)

group 2 46.7 23.33 24.2 <.001
Residuals 27 26.0 0.96

> # mean of group variances:
> mean(with(mood.data,

+ tapply(mood,group,var)) )

[1] 0.9629%6 Grand Mean

ANOVA tables

MSgroup = N X (between-group variance)

> anova(mood.1m)
Analysis of Variance Table
Response: mood
Df Sum Sq Mean Sq F value Pr(>F)

group 2 46.7 23.33 24.2 <.001
Residuals 27 26.0 0.96

>n <- 10

> ( groupMeans <- with(mood.data,tapply(mood,group,mean)) )
neutral  pleasant unpleasant
4 6 3
> n * var(groupMeans)
[1] 23.33333




MSaroup is the sum of 2 components

« between-group variance has 2 sources M Hy Hg M
- real differences among u values |
- sampling variation

« if HOis true: o; = 0

« between-group variance is caused
only by sampling variation

Grand Mean

@ =l — Hg

Estimates of Population Error Variance
when HO is TRUE variation among group means is pure SAMPLING VARIANCE

« recall that
« ifHOis true:a; = 0

« between-group variance is caused only by sampling variation

A2 -
o
2 4 ~2 ~2
5 =—,S0 =n>(o‘,,
-, e b4
« when HO is true

- MSj = 62 and MSw & MSg are independent estimates of 62

- inthe long run, averages of MSw and MSg equal aez when HO is true, and

= B is a random variable that follows the so-called F distribution
w

Estimates of Population Error Variance
when HO is FALSE variation among groups caused by SAMPLING VARIANCE plus group effects

. if HO is false: o # 0 (for at least group)

« between-group variance is caused by sampling variation & alpha’s

A2 &Z ZO{IZ
_op=—+
n a—1
22y EG
_ E(MSB)=nX6ﬂ=6e+
a—1

. and we expect MSp > MSy, as Zajz increases, and F' > 1

« evaluate with 1-tailed tests... look for unusually large values of F

Estimates of Population Error Variance

value of MSg reflects error variance and group effects

@ =l — Hg
Hi K2 He H3

EMSw)=E & =02
df

Grana Mean
When HO is true & a;=0 When HO is false & a;# 0
E(MSp) = E(MSw) E(MSp) > E(MSw)
F~1 F>1




ANOVA tables

MS values are estimates of variance

> anova(mood.1m)
Analysis of Variance Table
Response: mood

Df Sum Sq Mean Sq F value Pr(>F)
group 2 46.7 23.33 24.2 9.4e-Q7 ***
Residuals 27 26.0 0.96

When HO is true:
MSresid & MSgroup are independent estimates of VAR(error)
F = MSgroup/MSresia = 1 (distributed as F(2,27) )

When H1 is true:
MS,esid = estimate of VAR(error)

MSgroup = estimate of VAR(error) + [positive number that depends on a’s]

F = MSgroup/MSresia >> 1

ANOVA tables

Using F to test null hypothesis

density

0.2 0.4 0.6 0.8

0.0

When HO is true:
MS;esid & MSgroup are independent estimates of VAR(error)
F = MSgroup/MSresia = 1 (distributed as F(2,27) )

F(2,27) distribution

| F = 3.35, p<.05 cutoff

observed F =24

ANOVA tables

interpretations of HO & H1

> anova(mood.1lm)
Analysis of Variance Table
Response: mood

Df Sum Sq Mean Sq F value Pr(F)
group 2 46.7 23.33 24.2 9.4e-07 ***
Residuals 27 26.0 0.96

HO: all group effects (alpha’s) are zero
H1: not all group effects (alpha’s) are zero

HO: all populations have the same mean
H1: not all populations have the same mean

Assuming all of the effects are zero, is the change
in goodness of fit (SS error) unusually large?

Assuming all of the effects are zero, is the
variation among group means unusually large?

effect size & association strength




effect size (Cohen’s f)
Hy o Hg M3

> library(effectsize)
> cohens_f(mood.1m)
Parameter | Cohen's f | 90% CI

1.34 | [0.88, 1.75]

Grand
Mean
> cohens_f_squared(mood.1m)
Parameter | Cohen's f2 | 90% CI

1.79 | [0.77, 3.08]

association strength

proportion of variance accounted for by group

adjusted R-squared

omega-squared

2
Q

2 2
o5+ 02

2 o

B W=

0.01 is a small association
06 is a medium association
14 or larger is a large association

w?
w?
w?

0.
0.

association strength

proportion of variation that is accounted for by group

> summary(mood.1m)

Coefficients:
Estimate Std. Error t value Pr(>1tl)
(Intercept) 4.333 0.179 24.19 < .0001
groupl -0.333 0.253 -1.32 0.2
group2 1.667 0.253 6.58 < .0001 o VAR(residuals) =0.896

Residual standard error: ©.981 on 27 df
(Multiple RA2: ©.642, Adjusted RA2: ©.616)
F: 24.2 on 2 and 27 DF, p-value: 9.42e-07

o VAR(original scores) = 2.506
© s0 we accounted 64%, of VAR(original scores)

> eta_squared(mood.1m)
Parameter | Eta2 | 90% CI

> omega_squared(mood.1lm)
Parameter | Omega2 |

I ~
90% C a)2 ~ R2

assumptions




Assumptions of ANOVA

« The scores must be statistically independent of each other
« Population of scores, Y, distributed normally within each group
- equivalent to assuming that error follows normal distribution
« Error variance is constant across groups
« If assumptions are met, F statistic follows F distribution
- if they are not met, F statistic does not follow F distribution

Non-normality & non-constant variance

« ANOVA reasonably robust to deviations from normality
- if deviations are similar in all groups
- less robust to deviations that differ across groups
» e.g., positive skew in 1 group and negative skew in others
- robustness also declines if n is not equal across groups
« ANOVA is reasonably robust to 3-4 fold differences in variances
- if Y’s normally distributed and equal n per group

Tests for non-normality

« Kolmogorov-Smirnov test: ks.test()
« Shapiro-Wilk’s test: shapiro.test()
« Both tests have low power, though shapiro.test is better

- to compensate, could use tests with alpha = 0.10

shapiro.test(residuals(mood.full) )

##

## Shapiro-Wilk normality test
#it

## data: residuals(mood.full)
## W = 0.85, p-value = 5e-04

HO: residuals are distributed normally

Bartlett.test

test for homogeneity of variance

bartlett.test(mood~group, data=mood.data)
bartlett.test(mood.data$mood,mood.data$group)
#it

## Bartlett test of homogeneity of variances
##

## data: mood.data$mood and mood.data$group
## Bartlett's K-squared = 2.6, df = 2, p-value
## = 0.3

HO: variance is constant across groups

(also see leveneTest in car package )




Alternative Analyses

« perform ANOVA on transformed data
- square-root, log, & inverse-sine transformations common

- conclusions apply to transformed data
« Welch correction for non-constant variance
- oneway.test () [N.B. Assumes normality]

oneway .test (mood~group,data=mood.data)

#i#

## One-way analysis of means (not assuming

## equal variances)

#i#

## data: mood and group

## F = 18, num df = 2, denom df = 17, p-value =
## 6e-05

Alternative Analyses

« Kruskal-Wallis test for group differences [kruskal.test()]
- does not assume normality or constant variance
- HO: the means of ranked data are the same in each group

- if distributions for each group have same shape (not necessarily normal),
then KW test evaluates null hypothesis that group MEDIANS are equal

kruskal.test (mood~group,data=mood.data)

#Hi#

## Kruskal-Wallis rank sum test

#i#

## data: mood by group

## Kruskal-Wallis chi-squared = 19, df =
## p-value = 7e-05

2,




