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1-way ANOVA

1-way ANOVA 
overview

• Comparisons of nested linear models 

• Interpretations of ANOVA tables 

• Mean Squares are estimates of variance 

• effect size & association strength 

• Assumptions of ANOVA & alternatives

nested linear models



Linear Models

• ANOVA fits & compares several nested, linear models 

-  

-  is score “i” in group “j” 

-  are a predictor variables (e.g., representing groups/conditions) 

-  are coefficients adjusted to minimize 

Yij = β0 + β1X1 + β2X2 + ⋯ + eij

Yij

Xi

βi Σe2
ij

Linear Models

• Linear models are a very broad class of models 

• can be used to characterize curvilinear associations between Y and X’s 

-  

-  

-

Yij = β0 + β1X1 + β2X2 + ⋯ + eij

Yij = β0 + β1X1 + β2X2
2 + ⋯ + eij

Yij = β0 + β1 exp(X1) + β2 log(X2) + ⋯ + eij

Linear Models 
include linear regression & multiple regression

Linear Models

ANOVA models are fit using the criterion of least-squares

Least-squares estimate of model parameters

intercept residual

predicted scoreŶi

Yij = β0 + β1X1 + β2X2 + ⋯ + βpXp + eij

residual = difference between observed & predicted scoreseij = Yij − ̂Yij

Least-squares measure of goodness-of-fit: sum of squared-residualsΣe2
ij



Comparing Nested Linear Models

• Compare nested linear models 

- models vary in complexity and how well they fit the data 

- select model that provides best fit with fewest parameters 

• Define “complexity” as number of parameters (i.e., predictor variables) 

• Define “goodness-of-fit” as sum of squared residuals 

- measure effect of removing free parameters on goodness-of-fit 

- if change is small, keep simpler, reduced model 

- if change is large, do not remove parameters & keep full model

Best-fitting (least-squares) parameters 
( for a 1-way design )
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parameters. With this notion of model complexity, we can restate the problem of
model selection as choosing the model with the fewest parameters that provides a
good fit to the data.

To illustrate how this is done, we will analyze the data presented in Table 3.2 of
your textbook. The data are from a mood induction study by Pruitt (1988). Subjects
had to view videoclips that were designed to induce a pleasant, unpleasant, or neutral
mood. After viewing a videoclip, each subject rated his/her mood on several scales.
In addition, each subject was videotaped, and an assistant (who did not know which
videoclip was watched by the subject) later watched the videotape and rated each
subject’s mood on a 7-point scale. The assistant’s ratings are presented in Table 3.2
in the textbook. There were 10 subjects per group. Our task is to determine if mood
ratings were associated with videoclip condition (pleasant, neutral, and unpleasant).
We fit the following two models to the data:

Yij = µ+ ↵j + eij (8)

Yij = µ+ eij (9)

Here, Yij represents the score (i.e., mood rating) for subject i in group j. In
Equation 8, the observed score, Yij is the sum of a constant (µ), a group-specific
e↵ect (↵j), and a residual term (eij); the predicted score, Ŷij, equals µ + ↵j. In
Equation 9, the observed score is the sum of a constant and a residual term, and the
predicted score consists only of a constant. The e↵ects are defined as ↵j = µj � µ,
and satisfy the constraint that the sum of all e↵ects is zero:

aX

j=1

↵j = 0 (10)

where a is the number of groups. Note that the models specified by Equations 8 and
9 are nested versions of each other because Equation 9 can be obtained by setting
↵j = 0. Equations 8 and 9 represent the full and reduced models, respectively. The
question of interest is whether the full model provides a better fit to the data than
the reduced model, even after taking into account its greater complexity.

Now that we’ve specified the models, we need to estimate the best-fitting (least
squares) parameters. For the full model, it can be shown that the sum of squared
residuals for Equation 8 is minimized by setting µ = Ȳu and ↵j = ↵̂j, where

Ȳu =
aX

j=1

Ȳj/a (11)

↵̂j = Ȳj � Ȳu . (12)
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full model:

reduced model:

Nested Linear Models

• Defined as difference between group mean & overall mean 

- with this definition, alphas MUST sum to zero 

- often called “sigma” or “sum-to-zero” definition of alphas    

• There are other definitions of group effects & intercept that yield 
the same, minimum value of the sum of squared residuals.

∑
j

αj = 0

Group effects (alphas)

Best-fitting (least-squares) parameters 
( for a 1-way design )
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↵j = 0. Equations 8 and 9 represent the full and reduced models, respectively. The
question of interest is whether the full model provides a better fit to the data than
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full model:

reduced model:

Nested Linear Models

• Estimate parameters of models from sample 

• which values of  and  minimize  ?μ αj Σe2
ij

∑
j

αj = 0

Best-fitting (least-squares) parameters 
( for a 1-way design )

Reduced Model: Yij = μ + eij

µ = Ȳ
intercept equals 
the grand mean

∑
j

αj = 0

Full Model: Yij = μ + αj + eij

unweighted mean of 
group means

difference between group 
& unweighted means
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model selection as choosing the model with the fewest parameters that provides a
good fit to the data.

To illustrate how this is done, we will analyze the data presented in Table 3.2 of
your textbook. The data are from a mood induction study by Pruitt (1988). Subjects
had to view videoclips that were designed to induce a pleasant, unpleasant, or neutral
mood. After viewing a videoclip, each subject rated his/her mood on several scales.
In addition, each subject was videotaped, and an assistant (who did not know which
videoclip was watched by the subject) later watched the videotape and rated each
subject’s mood on a 7-point scale. The assistant’s ratings are presented in Table 3.2
in the textbook. There were 10 subjects per group. Our task is to determine if mood
ratings were associated with videoclip condition (pleasant, neutral, and unpleasant).
We fit the following two models to the data:

Yij = µ+ ↵j + eij (8)

Yij = µ+ eij (9)

Here, Yij represents the score (i.e., mood rating) for subject i in group j. In
Equation 8, the observed score, Yij is the sum of a constant (µ), a group-specific
e↵ect (↵j), and a residual term (eij); the predicted score, Ŷij, equals µ + ↵j. In
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aX
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↵j = 0 (10)

where a is the number of groups. Note that the models specified by Equations 8 and
9 are nested versions of each other because Equation 9 can be obtained by setting
↵j = 0. Equations 8 and 9 represent the full and reduced models, respectively. The
question of interest is whether the full model provides a better fit to the data than
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Ȳu =
aX

j=1

Ȳj/a (11)

↵̂j = Ȳj � Ȳu . (12)
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µ =
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Comparing Full & Reduced Models
• We expect full model to fit the data better 

• Why? 

- because it has more free parameters (is more complex) 

- adjusting values of alpha is expected to reduce  

- even when true values of alphas in population are zero 

• H0:  (for all j’s)         H1:  (for at least 1 group, j) 

- when H0 is true, all groups are selected from populations with same mean  

- variation among  is due to sampling variation 

- reduced model should provide a reasonably good fit to data 

- difference between  for full & reduced model should not be unusually large 

• Question: is change in  unusually large assuming H0 is true (and true alphas are 0)?

Σe2
ij

αj = 0 αj ≠ 0

μ

Ȳj

Σe2
ij

Σe2
ij

Measure of relative goodness-of-fit
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Ȳu is simply the mean of the group means; di↵erences in the size of the groups (if
they exist) are ignored, and so Ȳu is said to be the unweighted mean of the group
means. ↵̂j is simply the di↵erence between the mean of group j and Ȳu. For the
reduced model, setting the one free parameter, µ, to the grand average, Ȳ , minimizes
the sum of squared residuals.

3.3.1 F formula

Next, we need to derive a quantitative measure of the relative goodness-of-fit of the
two models. We denote the sum of squared residuals for the best-fitting full
and reduced models as EF and ER, respectively. Associated with EF and ER are
degrees-of-freedom dfF = N � a and dfR = N � 1, respectively, where N is the total
number of observations and a is the number of groups. Note that dfR � dfF = a� 1
is the di↵erence between the number of parameters estimated in the full model (3 ↵’s
and 1 intercept) and the reduced model (1 intercept). The formula for computing
the di↵erence between the two models is

F =
(ER � EF )/(dfR � dfF )

EF/dfF
(13)

Equation 13 can be used to compare all nested linear models. All tests in ANOVA,
analysis of covariance, and multiple regression can be computed using this formula.

3.3.2 Null Hypothesis Testing

Finally, we are in a position to evaluate the hypothesis of no di↵erence between
the goodness-of-fit of the full and reduced models. Note that this comparison is
equivalent to evaluating the hypothesis that all of the groups have the same mean; or
(equivalently) that all ↵j’s are zero. More formally, we are comparing the hypotheses

H0 : ↵1 = ↵2 = · · · = ↵a = 0
H1 : ↵j 6= 0

The null hypothesis is that all of the e↵ects are zero, and therefore that all group
means are equal. The alternative hypothesis is that at least one e↵ect is not zero, and
therefore that not all group means are equal. When the residuals, eij, are distributed
as independent, normal random variables, with mean of zero and a constant variance,
then F in Equation 13 follows an F distribution with (dfR�dfF ) and dfF degrees of
freedom in the numerator and denominator, repsectively (Figure 1). Under the null
hypothesis, therefore, large values of F should be relatively rare (Figure 2). Using
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ER:  for reduced model 

EF:  for full model 

dfR: degrees-of-freedom reduced model 

dfF: degrees-of-freedom full model

Σe2
ij

Σe2
ij

• df = N - (the number of estimated parameters) 
• dfR = N - 1  
• dfF = N - a [N = total number scores; a = number of groups] 
• (dfR - dfF) = (a-1) = change in number of free parameters in full & reduced models

F distribution when H0 is true
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Figure 1: The F distribution is determined by two parameters which correspond to
the degrees of freedom of the numerator and denominator of the F ratio. This figure
shows the probability density functions of three di↵erent F distributions.
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When H0 is true, F statistic follows F distribution 
with (dfR-dfF) & (dfF) degrees of freedom

R example (mood induction experiment)



mood induction experiment
> library(sciplot)
> par(mfrow=c(1,1),cex=1.5)
> with(data=mood.data,
       bargraph.CI(x.factor=group,
                   response=mood,
                   main="Mood Data") )

> summary(mood.data)
        group         mood     
 neutral   :10   Min.   :1.00  
 pleasant  :10   1st Qu.:3.25  
 unpleasant:10   Median :4.00  
                 Mean   :4.33  
                 3rd Qu.:5.00  
                 Max.   :7.00  
> # grand mean
> mean(mood.data$mood)
[1] 4.3333
> # group means
> with(mood.data,tapply(mood,group,mean))
   neutral   pleasant unpleasant 
         4          6          3 
> # group SD
> with(mood.data,tapply(mood,group,sd))
   neutral   pleasant unpleasant 
   0.66667    1.15470    1.05409 

Comparison of full & restricted models

> # load data:
> load(file=url("http://pnb.mcmaster.ca/bennett/psy710/datasets/mood_data.rda"))
> # fit models:
> mood.full <- lm(mood~1+group,data=mood.data)
> mood.restricted <- lm(mood~1,data=mood.data)

Comparison of full & restricted models
> # extract residuals:
> (E.full<-sum(residuals(mood.full)^2))
[1] 26
> (E.restricted<-sum(residuals(mood.restricted)^2))
[1] 72.667
> (E.restricted-E.full)
[1] 46.667
> (df.full<-mood.full$df.residual)
[1] 27
> (df.restricted<-mood.restricted$df.residual)
[1] 29
> # compare SSresids with F test:
> (F <- ( (E.restricted-E.full)/(df.restricted-df.full)/(E.full/df.full) ) )
[1] 24.231
> (p.value <- 1-pf(F,df1=(df.restricted-df.full),df2=df.full) )
[1] 9.4214e-07
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The null hypothesis is that all of the e↵ects are zero, and therefore that all group
means are equal. The alternative hypothesis is that at least one e↵ect is not zero, and
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hypothesis, therefore, large values of F should be relatively rare (Figure 2). Using
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ANOVA tables
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
(ER � EF )/(dfR � dfF )

EF/dfF
=

MSB

MSW
(14)

From Equation 14 it is possible to show that

EF = SSW

ER = SSB + SSW = SSTotal

ER � EF = SSTotal � SSW = SSB
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values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
(ER � EF )/(dfR � dfF )

EF/dfF
=

MSB

MSW
(14)

From Equation 14 it is possible to show that

EF = SSW

ER = SSB + SSW = SSTotal

ER � EF = SSTotal � SSW = SSB
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Ȳu is simply the mean of the group means; di↵erences in the size of the groups (if
they exist) are ignored, and so Ȳu is said to be the unweighted mean of the group
means. ↵̂j is simply the di↵erence between the mean of group j and Ȳu. For the
reduced model, setting the one free parameter, µ, to the grand average, Ȳ , minimizes
the sum of squared residuals.

3.3.1 F formula

Next, we need to derive a quantitative measure of the relative goodness-of-fit of the
two models. We denote the sum of squared residuals for the best-fitting full
and reduced models as EF and ER, respectively. Associated with EF and ER are
degrees-of-freedom dfF = N � a and dfR = N � 1, respectively, where N is the total
number of observations and a is the number of groups. Note that dfR � dfF = a� 1
is the di↵erence between the number of parameters estimated in the full model (3 ↵’s
and 1 intercept) and the reduced model (1 intercept). The formula for computing
the di↵erence between the two models is

F =
(ER � EF )/(dfR � dfF )

EF/dfF
(13)

Equation 13 can be used to compare all nested linear models. All tests in ANOVA,
analysis of covariance, and multiple regression can be computed using this formula.

3.3.2 Null Hypothesis Testing

Finally, we are in a position to evaluate the hypothesis of no di↵erence between
the goodness-of-fit of the full and reduced models. Note that this comparison is
equivalent to evaluating the hypothesis that all of the groups have the same mean; or
(equivalently) that all ↵j’s are zero. More formally, we are comparing the hypotheses

H0 : ↵1 = ↵2 = · · · = ↵a = 0
H1 : ↵j 6= 0

The null hypothesis is that all of the e↵ects are zero, and therefore that all group
means are equal. The alternative hypothesis is that at least one e↵ect is not zero, and
therefore that not all group means are equal. When the residuals, eij, are distributed
as independent, normal random variables, with mean of zero and a constant variance,
then F in Equation 13 follows an F distribution with (dfR�dfF ) and dfF degrees of
freedom in the numerator and denominator, repsectively (Figure 1). Under the null
hypothesis, therefore, large values of F should be relatively rare (Figure 2). Using
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Ȳu is simply the mean of the group means; di↵erences in the size of the groups (if
they exist) are ignored, and so Ȳu is said to be the unweighted mean of the group
means. ↵̂j is simply the di↵erence between the mean of group j and Ȳu. For the
reduced model, setting the one free parameter, µ, to the grand average, Ȳ , minimizes
the sum of squared residuals.

3.3.1 F formula

Next, we need to derive a quantitative measure of the relative goodness-of-fit of the
two models. We denote the sum of squared residuals for the best-fitting full
and reduced models as EF and ER, respectively. Associated with EF and ER are
degrees-of-freedom dfF = N � a and dfR = N � 1, respectively, where N is the total
number of observations and a is the number of groups. Note that dfR � dfF = a� 1
is the di↵erence between the number of parameters estimated in the full model (3 ↵’s
and 1 intercept) and the reduced model (1 intercept). The formula for computing
the di↵erence between the two models is

F =
(ER � EF )/(dfR � dfF )

EF/dfF
(13)

Equation 13 can be used to compare all nested linear models. All tests in ANOVA,
analysis of covariance, and multiple regression can be computed using this formula.

3.3.2 Null Hypothesis Testing

Finally, we are in a position to evaluate the hypothesis of no di↵erence between
the goodness-of-fit of the full and reduced models. Note that this comparison is
equivalent to evaluating the hypothesis that all of the groups have the same mean; or
(equivalently) that all ↵j’s are zero. More formally, we are comparing the hypotheses

H0 : ↵1 = ↵2 = · · · = ↵a = 0
H1 : ↵j 6= 0

The null hypothesis is that all of the e↵ects are zero, and therefore that all group
means are equal. The alternative hypothesis is that at least one e↵ect is not zero, and
therefore that not all group means are equal. When the residuals, eij, are distributed
as independent, normal random variables, with mean of zero and a constant variance,
then F in Equation 13 follows an F distribution with (dfR�dfF ) and dfF degrees of
freedom in the numerator and denominator, repsectively (Figure 1). Under the null
hypothesis, therefore, large values of F should be relatively rare (Figure 2). Using
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Ȳu is simply the mean of the group means; di↵erences in the size of the groups (if
they exist) are ignored, and so Ȳu is said to be the unweighted mean of the group
means. ↵̂j is simply the di↵erence between the mean of group j and Ȳu. For the
reduced model, setting the one free parameter, µ, to the grand average, Ȳ , minimizes
the sum of squared residuals.

3.3.1 F formula

Next, we need to derive a quantitative measure of the relative goodness-of-fit of the
two models. We denote the sum of squared residuals for the best-fitting full
and reduced models as EF and ER, respectively. Associated with EF and ER are
degrees-of-freedom dfF = N � a and dfR = N � 1, respectively, where N is the total
number of observations and a is the number of groups. Note that dfR � dfF = a� 1
is the di↵erence between the number of parameters estimated in the full model (3 ↵’s
and 1 intercept) and the reduced model (1 intercept). The formula for computing
the di↵erence between the two models is

F =
(ER � EF )/(dfR � dfF )

EF/dfF
(13)

Equation 13 can be used to compare all nested linear models. All tests in ANOVA,
analysis of covariance, and multiple regression can be computed using this formula.

3.3.2 Null Hypothesis Testing

Finally, we are in a position to evaluate the hypothesis of no di↵erence between
the goodness-of-fit of the full and reduced models. Note that this comparison is
equivalent to evaluating the hypothesis that all of the groups have the same mean; or
(equivalently) that all ↵j’s are zero. More formally, we are comparing the hypotheses

H0 : ↵1 = ↵2 = · · · = ↵a = 0
H1 : ↵j 6= 0

The null hypothesis is that all of the e↵ects are zero, and therefore that all group
means are equal. The alternative hypothesis is that at least one e↵ect is not zero, and
therefore that not all group means are equal. When the residuals, eij, are distributed
as independent, normal random variables, with mean of zero and a constant variance,
then F in Equation 13 follows an F distribution with (dfR�dfF ) and dfF degrees of
freedom in the numerator and denominator, repsectively (Figure 1). Under the null
hypothesis, therefore, large values of F should be relatively rare (Figure 2). Using
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Ȳu is simply the mean of the group means; di↵erences in the size of the groups (if
they exist) are ignored, and so Ȳu is said to be the unweighted mean of the group
means. ↵̂j is simply the di↵erence between the mean of group j and Ȳu. For the
reduced model, setting the one free parameter, µ, to the grand average, Ȳ , minimizes
the sum of squared residuals.

3.3.1 F formula

Next, we need to derive a quantitative measure of the relative goodness-of-fit of the
two models. We denote the sum of squared residuals for the best-fitting full
and reduced models as EF and ER, respectively. Associated with EF and ER are
degrees-of-freedom dfF = N � a and dfR = N � 1, respectively, where N is the total
number of observations and a is the number of groups. Note that dfR � dfF = a� 1
is the di↵erence between the number of parameters estimated in the full model (3 ↵’s
and 1 intercept) and the reduced model (1 intercept). The formula for computing
the di↵erence between the two models is

F =
(ER � EF )/(dfR � dfF )

EF/dfF
(13)

Equation 13 can be used to compare all nested linear models. All tests in ANOVA,
analysis of covariance, and multiple regression can be computed using this formula.

3.3.2 Null Hypothesis Testing

Finally, we are in a position to evaluate the hypothesis of no di↵erence between
the goodness-of-fit of the full and reduced models. Note that this comparison is
equivalent to evaluating the hypothesis that all of the groups have the same mean; or
(equivalently) that all ↵j’s are zero. More formally, we are comparing the hypotheses

H0 : ↵1 = ↵2 = · · · = ↵a = 0
H1 : ↵j 6= 0

The null hypothesis is that all of the e↵ects are zero, and therefore that all group
means are equal. The alternative hypothesis is that at least one e↵ect is not zero, and
therefore that not all group means are equal. When the residuals, eij, are distributed
as independent, normal random variables, with mean of zero and a constant variance,
then F in Equation 13 follows an F distribution with (dfR�dfF ) and dfF degrees of
freedom in the numerator and denominator, repsectively (Figure 1). Under the null
hypothesis, therefore, large values of F should be relatively rare (Figure 2). Using
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> class(mood.aov)
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Ȳu is simply the mean of the group means; di↵erences in the size of the groups (if
they exist) are ignored, and so Ȳu is said to be the unweighted mean of the group
means. ↵̂j is simply the di↵erence between the mean of group j and Ȳu. For the
reduced model, setting the one free parameter, µ, to the grand average, Ȳ , minimizes
the sum of squared residuals.

3.3.1 F formula

Next, we need to derive a quantitative measure of the relative goodness-of-fit of the
two models. We denote the sum of squared residuals for the best-fitting full
and reduced models as EF and ER, respectively. Associated with EF and ER are
degrees-of-freedom dfF = N � a and dfR = N � 1, respectively, where N is the total
number of observations and a is the number of groups. Note that dfR � dfF = a� 1
is the di↵erence between the number of parameters estimated in the full model (3 ↵’s
and 1 intercept) and the reduced model (1 intercept). The formula for computing
the di↵erence between the two models is

F =
(ER � EF )/(dfR � dfF )

EF/dfF
(13)

Equation 13 can be used to compare all nested linear models. All tests in ANOVA,
analysis of covariance, and multiple regression can be computed using this formula.

3.3.2 Null Hypothesis Testing

Finally, we are in a position to evaluate the hypothesis of no di↵erence between
the goodness-of-fit of the full and reduced models. Note that this comparison is
equivalent to evaluating the hypothesis that all of the groups have the same mean; or
(equivalently) that all ↵j’s are zero. More formally, we are comparing the hypotheses

H0 : ↵1 = ↵2 = · · · = ↵a = 0
H1 : ↵j 6= 0

The null hypothesis is that all of the e↵ects are zero, and therefore that all group
means are equal. The alternative hypothesis is that at least one e↵ect is not zero, and
therefore that not all group means are equal. When the residuals, eij, are distributed
as independent, normal random variables, with mean of zero and a constant variance,
then F in Equation 13 follows an F distribution with (dfR�dfF ) and dfF degrees of
freedom in the numerator and denominator, repsectively (Figure 1). Under the null
hypothesis, therefore, large values of F should be relatively rare (Figure 2). Using
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
(ER � EF )/(dfR � dfF )

EF/dfF
=

MSB

MSW
(14)

From Equation 14 it is possible to show that

EF = SSW

ER = SSB + SSW = SSTotal

ER � EF = SSTotal � SSW = SSB
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA
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who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
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freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).
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Table 1: A standard ANOVA table for a one-way design.
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ANOVA table (e.g., Table 1). For example, it can be shown that
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
(ER � EF )/(dfR � dfF )

EF/dfF
=

MSB

MSW
(14)

From Equation 14 it is possible to show that

EF = SSW

ER = SSB + SSW = SSTotal

ER � EF = SSTotal � SSW = SSB
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p
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Table 1: A standard ANOVA table for a one-way design.
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ANOVA table (e.g., Table 1). For example, it can be shown that
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
(ER � EF )/(dfR � dfF )

EF/dfF
=

MSB

MSW
(14)

From Equation 14 it is possible to show that

EF = SSW

ER = SSB + SSW = SSTotal

ER � EF = SSTotal � SSW = SSB

6

Bennett, PJ PSY710 Chapter 3

the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
(ER � EF )/(dfR � dfF )
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(14)
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).
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Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
(ER � EF )/(dfR � dfF )
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
(ER � EF )/(dfR � dfF )
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(14)

From Equation 14 it is possible to show that
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
(ER � EF )/(dfR � dfF )
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(14)
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
(ER � EF )/(dfR � dfF )

EF/dfF
=

MSB

MSW
(14)

From Equation 14 it is possible to show that

EF = SSW
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
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From Equation 14 it is possible to show that
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
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From Equation 14 it is possible to show that
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a � 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n � 1) = N � a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N�1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a� 1 SSB MSB MSB/MSW p

Residuals a(n� 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that
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From Equation 14 it is possible to show that
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parameters. With this notion of model complexity, we can restate the problem of
model selection as choosing the model with the fewest parameters that provides a
good fit to the data.

To illustrate how this is done, we will analyze the data presented in Table 3.2 of
your textbook. The data are from a mood induction study by Pruitt (1988). Subjects
had to view videoclips that were designed to induce a pleasant, unpleasant, or neutral
mood. After viewing a videoclip, each subject rated his/her mood on several scales.
In addition, each subject was videotaped, and an assistant (who did not know which
videoclip was watched by the subject) later watched the videotape and rated each
subject’s mood on a 7-point scale. The assistant’s ratings are presented in Table 3.2
in the textbook. There were 10 subjects per group. Our task is to determine if mood
ratings were associated with videoclip condition (pleasant, neutral, and unpleasant).
We fit the following two models to the data:

Yij = µ+ ↵j + eij (8)

Yij = µ+ eij (9)

Here, Yij represents the score (i.e., mood rating) for subject i in group j. In
Equation 8, the observed score, Yij is the sum of a constant (µ), a group-specific
e↵ect (↵j), and a residual term (eij); the predicted score, Ŷij, equals µ + ↵j. In
Equation 9, the observed score is the sum of a constant and a residual term, and the
predicted score consists only of a constant. The e↵ects are defined as ↵j = µj � µ,
and satisfy the constraint that the sum of all e↵ects is zero:

aX

j=1

↵j = 0 (10)

where a is the number of groups. Note that the models specified by Equations 8 and
9 are nested versions of each other because Equation 9 can be obtained by setting
↵j = 0. Equations 8 and 9 represent the full and reduced models, respectively. The
question of interest is whether the full model provides a better fit to the data than
the reduced model, even after taking into account its greater complexity.

Now that we’ve specified the models, we need to estimate the best-fitting (least
squares) parameters. For the full model, it can be shown that the sum of squared
residuals for Equation 8 is minimized by setting µ = Ȳu and ↵j = ↵̂j, where

Ȳu =
aX

j=1

Ȳj/a (11)

↵̂j = Ȳj � Ȳu . (12)

3

full:

reduced:

Models

αj = μj − μG

Estimates of Population Error Variance

MSW =
EF

dfF
= �̂2

e

Residual Standard Error

s
EF

df F
= �̂e
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μ1 μ2 μ3μG

Grand Mean

σe
MSW is weighted average 
of within-group variances

ANOVA tables 
MSresid = AVG(within-group variance)

> # mean of group variances:
> mean(with(mood.data,
+      tapply(mood,group,var)) )
[1] 0.96296

> anova(mood.lm)
Analysis of Variance Table
Response: mood
          Df Sum Sq Mean Sq F value  Pr(>F)    
group      2   46.7   23.33    24.2  <.001
Residuals 27   26.0    0.96                    

μ1 μ2 μ3μG

Grand Mean

σe

ANOVA tables 
MSgroup = n x (between-group variance)

> n <- 10
> ( groupMeans <- with(mood.data,tapply(mood,group,mean)) )
   neutral   pleasant unpleasant 
         4          6          3 
> n * var(groupMeans)
[1] 23.33333

> anova(mood.lm)
Analysis of Variance Table
Response: mood
          Df Sum Sq Mean Sq F value  Pr(>F)    
group      2   46.7   23.33    24.2  <.001
Residuals 27   26.0    0.96                    



MSGroup is the sum of 2 components

• between-group variance has 2 sources 

- real differences among  values  

- sampling variation 

• if H0 is true:  

• between-group variance is  caused 
only by sampling variation

μ

αj = 0

μ1 μ2 μ3μG

Grand Mean

σe

αj = μj − μG

Estimates of Population Error Variance 
when H0 is TRUE variation among group means is pure SAMPLING VARIANCE

• recall that  

• if H0 is true:  

• between-group variance is  caused only by sampling variation 

-  , so  ,  

• when H0 is true 

-  and MSW & MSB are independent estimates of   

- in the long run, averages of MSW and MSB equal  when H0 is true, and 

-  is a random variable that follows the so-called F distribution

MSB = n × ̂σ2
Ȳ

αj = 0

̂σ2
Ȳ =

̂σ2
e

n
̂σ2
e = n × ̂σ2

Ȳ

MSB = ̂σ2
e σ2

e

σ2
e

F =
MSB

MSW

Estimates of Population Error Variance 
when H0 is FALSE variation among groups caused by SAMPLING VARIANCE plus group effects

• if H0 is false:  (for at least group) 

• between-group variance is caused by sampling variation & alpha’s 

-   

- E(MSB) =  =   

• and we expect  as  increases, and  

• evaluate with 1-tailed tests… look for unusually large values of F

αj ≠ 0

̂σ2
Ȳ =

̂σ2
e

n
+

Σα2
j

a − 1

n × σ2
μ σ2

e +
nΣα2

j

a − 1
MSB > MSW Σα2

j F ≫ 1

Estimates of Population Error Variance 
value of MSB reflects error variance and group effects
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MSW and EF/dfF are estimates of the population error variance, �2
e . If the null

hypothesis is true, MSB and (ER�EF )/(dfR�dfF ) also are estimates of �2
e . However,

if the null hypothesis is false, then

E(MSB) = �
2
e +

P
j nj↵

2
j

a� 1
(15)

where nj is the number of subjects in group j. So, when ↵j 6= 0 (for at least one
group, j), E(MSB) will tend to be larger than E(MSW ), and the F ratio (see Table
1) ought to be greater than one.

Finally, “Residual Standard Error”, a measure of goodness-of-fit that is provided
by many statistical software packages, can be shown to be equal to

p
EF/dfF .

3.3.4 Numerical Example

The data from the mood-induction experiment are shown in Table 2. You can load
the data into R with the following command:

load(url("http://www.psychology.mcmaster.ca/bennett/psy710/datasets/mood_data.Rdata"))

Next, we want to set up R so that it defines e↵ects as in Equation 10:

options(contrasts=c("contr.sum","contr.poly") )

The contr.sum parameter in the options command tells R to use the sum-to-
zero definition (Eq 10) of the ↵’s when the grouping variable is a factor. If you do
not use this command, then R will use a di↵erent definition for the ↵’s, and your
results will not match those shown here or in the textbook.

In R, we fit the full and reduced models to the data with the following commands:

names(mood.data)

## [1] "group" "mood"

mood.full <- lm(mood~1+group,data=mood.data)

mood.restricted <- lm(mood~1,data=mood.data)

The sum of the square residuals and degrees of freedom for each model are given
by
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E(MSW ) = E

✓
EF

dfF

◆
= �2

e

E(MSB) = E(MSW )

When H0 is true & αj = 0
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When H0 is false & αj ≠ 0

E(MSB) > E(MSW )

F > 1
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ANOVA tables 
MS values are estimates of variance

> anova(mood.lm)
Analysis of Variance Table
Response: mood
          Df Sum Sq Mean Sq F value  Pr(>F)    
group      2   46.7   23.33    24.2 9.4e-07 ***
Residuals 27   26.0    0.96                    

When H0 is true: 
MSresid & MSgroup are independent estimates of VAR(error) 
F = MSgroup/MSresid ≈ 1 (distributed as F(2,27) )

When H1 is true: 
MSresid = estimate of VAR(error) 
MSgroup = estimate of VAR(error) + [positive number that depends on α’s] 
F = MSgroup/MSresid >> 1

ANOVA tables 
Using F to test null hypothesis

When H0 is true: 
MSresid & MSgroup are independent estimates of VAR(error) 
F = MSgroup/MSresid ≈ 1 (distributed as F(2,27) )

F = 3.35, p<.05 cutoff

observed F = 24

ANOVA tables 
interpretations of H0 & H1

> anova(mood.lm)
Analysis of Variance Table
Response: mood
          Df Sum Sq Mean Sq F value  Pr(>F)    
group      2   46.7   23.33    24.2 9.4e-07 ***
Residuals 27   26.0    0.96                    

H0: all group effects (alpha’s) are zero 
H1: not all group effects (alpha’s) are zero

H0: all populations have the same mean 
H1: not all populations have the same mean

Assuming all of the effects are zero, is the 
variation among group means unusually large?

Assuming all of the effects are zero, is the change 
in goodness of fit (SS error) unusually large?

effect size & association strength



effect size (Cohen’s f)
μ1 μ2 μ3μG

Grand 
Mean

σe

> library(effectsize)
> cohens_f(mood.lm)
Parameter | Cohen's f |       90% CI
------------------------------------
group     |      1.34 | [0.88, 1.75]

> cohens_f_squared(mood.lm)
Parameter | Cohen's f2 |       90% CI
-------------------------------------
group     |       1.79 | [0.77, 3.08]

di =
(μ1 − μG)

σe
f =

∑i d2
i

3

association strength 
proportion of variance accounted for by group

adjusted R-squared

R̃2
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A simpler way of calculating confidence intervals for parameters in a linear model
is to use R’s confint() function:

confint(mood.full)

## 2.5 % 97.5 %

## (Intercept) 3.9657 4.7009

## group1 1.1468 2.1865

## group2 -0.8532 0.1865

confint(mood.full,level=.99)

## 0.5 % 99.5 %

## (Intercept) 3.8369 4.8297

## group1 0.9647 2.3687

## group2 -1.0353 0.3687

The first call lists the 95% confidence intervals; the second lists the 99% confidence
intervals.

3.3.6 Measures of association & e↵ect size

One common measure of association strength between between the dependent vari-
able and the predictors (i.e., between Yi and Ŷi) is R2, which is known as Multiple-R
squared, the coe�cient of determination, and eta squared (⌘2). R

2 represents the
amount of variance in the dependent variable that is accounted for, or explained by,
the linear model. One problem with R

2 is that it is biased: the value estimated
from the data is higher than the value in the population, and the bias increases as
sample size decreases. Adjusted-R2, denoted by R̃

2, is an unbiased, or at least a less
biased, estimate of the population R

2. Both R
2 and R̃

2 are printed by R’s summary()
function.

Another common measure of association is omega-squared (!2), which is the
variance of the treatment, or group, e↵ects (i.e., the ↵’s) divided by the sum of the
sum of the variance of the treatment e↵ects and error variance:

!
2 =

�
2
↵

�2
↵ + �2

e

(17)

Formulae for calculating !
2 are listed in your textbook. However, in most cases you

can simply use adjusted-R2 because the its value is very similar to !
2. Cohen (1988)

suggests the following guidelines for interpreting strength of association:
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omega-squared
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!
2 = 0.01 is a small association

!
2 = 0.06 is a medium association

!
2 = 0.14 or larger is a large association

Cohen’s f is a measure of e↵ect size. It is the ratio of the standard deviation of
the ↵’s divided by the standard deviation of the residuals. For this one-way design,
f is well-approximated by the equation

f ⇡

s
R̃2

1� R̃2
(18)

Alternatively, if you have access to the degrees of freedom and F value for the e↵ect
in question, and the total sample size, you can use the formula

f =

s✓
df.e↵ect

N.total

◆
(F.e↵ect� 1) (19)

Cohen’s f expresses the standard deviation among e↵ects relative to the standard
deviation of residuals. According to Cohen (1988), small, medium, and large e↵ects
correspond to f ’s of 0.1, 0.25, and 0.4, respectively. Among other things, f is useful
for calculations of power.

3.4 Power

The power of a test refers to the probability of rejecting the null hypothesis when it
is false. In the case of a oneway ANOVA, power depends on the number of groups,
number of subjects per group, ↵ level, and e↵ect size.

3.4.1 estimating sample size from a pilot study

As an example of how to use power to plan your experiments, consider the case where
you are planning to measure reaction time (RT) on three groups. Based on previous
experiments, or perhaps your own pilot data, you think that the average RTs in each
group will be 400, 450, 500, and the within-group standard deviation will be 100.
Cohen’s f is given by

�m

�e
=

q
(400�450)2+(450�450)2+(500�450)2

3�1

100
=

50

100
= .50 (20)
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> summary(mood.lm)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)    4.333      0.179   24.19  < .0001
group1        -0.333      0.253   -1.32      0.2    
group2         1.667      0.253    6.58  < .0001
Residual standard error: 0.981 on 27 df
Multiple R^2:  0.642,  Adjusted R^2:  0.616 
F: 24.2 on 2 and 27 DF,  p-value: 9.42e-07

> eta_squared(mood.lm)
Parameter | Eta2 |       90% CI
-------------------------------
group     | 0.64 | [0.43, 0.75]

> omega_squared(mood.lm)
Parameter | Omega2 |       90% CI
---------------------------------
group     |   0.61 | [0.39, 0.73]

association strength 
proportion of variation that is accounted for by group

ω2 ≈ R̃2

η2 = R2

• VAR(residuals)  = 0.896 

• VAR(original scores) = 2.506 
• so we accounted 64%, of VAR(original scores)

assumptions



Assumptions of ANOVA

• The scores must be statistically independent of each other  

• Population of scores, Y, distributed normally within each group 

- equivalent to assuming that error follows normal distribution 

• Error variance is constant across groups 

• If assumptions are met, F statistic follows F distribution 

- if they are not met, F statistic does not follow F distribution

Non-normality & non-constant variance

• ANOVA reasonably robust to deviations from normality 

- if deviations are similar in all groups 

- less robust to deviations that differ across groups 

‣ e.g., positive skew in 1 group and negative skew in others  

- robustness also declines if n is not equal across groups 

• ANOVA is reasonably robust to 3-4 fold differences in variances 

- if Y’s normally distributed and equal n per group

Tests for non-normality

• Kolmogorov-Smirnov test: ks.test() 

• Shapiro-Wilk’s test: shapiro.test() 

• Both tests have low power, though shapiro.test is better 

- to compensate, could use tests with alpha = 0.10
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It is generally assumed that ANOVA is robust to violations of the homogeneity
of variance assumption, as long as samples sizes in each group are equal. If sample
sizes are equal, the F test performs well if the ratio of the largest and smallest
variances among the groups is ⇡ 3 or less. If sample sizes are unequal, however, then
even moderate heterogeneity of variance can inflate Type I error rates significantly.
Also, if the scores within each group are distributed non-normally, then moderate
heterogeneity of variance will inflate Type I error rates even if group n’s are equal
(Wilcox and Keselman, 2003).

The F test is not robust to violations of the independence-of-errors assumption:
Violations of this assumption will result in very poor control of Type I error rates.
Kenny and Judd (1986) discuss how non-independence can a↵ect your data analyses.

3.5.2 tests for non-normality

There are many statistical methods that can be used to formally test whether
your data are distributed non-normally. Two that are implemented in R are the
Kolmogorov-Smirnov test (ks.test()) and the Shapiro-Wilk’s test (shapiro.test()).
Of the two, the Shapiro-Wilk’s test is preferred because it has higher power. How-
ever, the power of both of these tests is not very good, so they will not be sensitive
to small deviations from normality. One way of solving this problem is to use a more
liberal decision criterion (e.g., ↵ = 0.1).

shapiro.test(residuals(mood.full) )

##

## Shapiro-Wilk normality test

##

## data: residuals(mood.full)

## W = 0.85, p-value = 5e-04

As you can see, the p-value is quite small, so we reject the null hypothesis that
the residuals are distributed normally. We’ll return to the cause of the non-normality
in a moment.

A very useful graphical method for searching for non-normality is to plot the
residuals of your analysis in a qqplot using R’s qqnorm function. If the scores are
distributed normally, then they will fall along a straight line in a qqplot. The fol-
lowing commands were used to create Figure 3:
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H0: residuals are distributed normally

Bartlett.test 
test for homogeneity of variance
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qqnorm(residuals(mood.full),main="residuals from mood.full");

qqline(residuals(mood.full) );

The second function, qqline, adds a reference line. You can see that the residuals
do not fall along the line: although there follow a linear trend, there is a strange
scalloping, or staircase, e↵ect. This e↵ect is due to the nature of the relatively coarse
nature of the dependent variable (i.e., an integer on a 7-point mood scale). We can
test this idea by adding a very small amount of noise to the residuals. Adding the
noise jitter makes the data look much more normally distributed (see Figure 4).

tmp<-residuals(mood.full)+rnorm(residuals(mood.full),mean=0,sd=0.333)

shapiro.test(tmp)

##

## Shapiro-Wilk normality test

##

## data: tmp

## W = 0.95, p-value = 0.2

qqnorm(tmp,main="noise-jittered residuals");

qqline(tmp);

3.5.3 tests for homogeneity of variance

There are many statistical methods that can be used to formally test for hetero-
geneity of variance. One common test that is implemented in R is the Bartlett test
(bartlett.test()). As is the case for tests of non-normality, these tests often lack
power, so you might consider using a liberal decision criterion (e.g., ↵ = 0.1).

bartlett.test(mood.data$mood,mood.data$group)

##

## Bartlett test of homogeneity of variances

##

## data: mood.data$mood and mood.data$group

## Bartlett's K-squared = 2.6, df = 2, p-value

## = 0.3

18
H0: variance is constant across groups

bartlett.test(mood~group, data=mood.data)

( also see leveneTest in car package )



Alternative Analyses
• perform ANOVA on transformed data 
- square-root, log, & inverse-sine transformations common 
- conclusions apply to transformed data 
• Welch correction for non-constant variance 
- oneway.test () [N.B. Assumes normality]
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groups have unequal variances, the F calculated by Equation 13 will not be dis-
tributed as an F statistics with dfR � dfF and dfF degrees of freedom. However, it
will be distributed approximately as an F variable with reduced degrees of freedom.
The formula for correcting the degrees of freedom is given on page 134 in the text-
book. You can use R’s oneway.test() function evaluate group di↵erences with this
approach.

oneway.test(mood~group,data=mood.data)

##

## One-way analysis of means (not assuming

## equal variances)

##

## data: mood and group

## F = 18, num df = 2, denom df = 17, p-value =

## 6e-05

In this case the e↵ect of group is still significant.
The Welch correction for degrees of freedom still assumes that the data are dis-

tributed normally. If the data are not distributed normally, then you might con-
sider using a non-parametric procedures. So-called non-parametric procedures make
minimal assumptions about the data, and so are appropriate when the scores are
non-normal and/or di↵er in variance. Your book describes the Kruskal-Wallis test,
which is appropriate for the one-way designs we are considering here. In R, the
Kruskal-Wallis test is used in the following way:

kruskal.test(x=mood.data$mood,g=mood.data$group)

##

## Kruskal-Wallis rank sum test

##

## data: mood.data$mood and mood.data$group

## Kruskal-Wallis chi-squared = 19, df = 2,

## p-value = 7e-05

Again, the e↵ect of group is significant.
You might think that you should always use non-parametric procedures because

they make weaker assumptions about the data than do parametric procedures (like
the F test). However, such a decision would be unwise: when the assumptions of
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Alternative Analyses
• Kruskal-Wallis test for group differences [kruskal.test()] 

- does not assume normality or constant variance 

- HO: the means of ranked data are the same in each group 

- if distributions for each group have same shape (not necessarily normal), 
then KW test evaluates null hypothesis that group MEDIANS are equal
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kruskal.test(mood~group,data=mood.data)

##

## Kruskal-Wallis rank sum test

##

## data: mood by group

## Kruskal-Wallis chi-squared = 19, df = 2,

## p-value = 7e-05

Again, the e↵ect of group is significant.
You might think that you should always use non-parametric procedures because

they make weaker assumptions about the data than do parametric procedures (like
the F test). However, such a decision would be unwise: when the assumptions
of normality and equal variance are approximately true, parametric tests are much
more powerful than non-parametric tests. Some writers have argued that traditional
non-parametric tests are so severely “underpowered” that they should almost never
be used (?). A variety of modern, non-parametric tests have been developed that
have considerably more power than traditional ones (??). Such methods are beyond
the scope of this course, but are covered in other courses. If you routinely analyze
data that violate the assumptions of normality and homogeneity of variance, then
you should seriously think about learning these methods.
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