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Review of Statistical Inference

part 2
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Null Hypothesis Significance Testing
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Null Hypothesis Significance Testing
•Create null (H0) & alternative (H1) hypotheses

- mutually exclusive & exhaustive

•Determine if data are unusual assuming H0 is true

• If data are sufficiently unusual, then we reject H0

• If data are not sufficiently unusual, we do not reject H0

- typically do not “accept H0” 

‣ the absence of evidence is not evidence of absence


•How do we determine if our data are “sufficiently unusual”?
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Null Hypothesis Significance Testing (for means)
• How different is observation from expected value when H0 is true?

• Express difference as a standardized distance


-
          


• Assuming the means are distributed normally

- z : distributed as standard normal variable

- t : distributed as t statistic with appropriate degrees-of-freedom


• Calculate probability of getting our z or t (or one more extreme)


- reject H0 if p value is below our “significance level” (i.e., alpha)

z =
Ȳ − μ

σȲ
=

Ȳ − μ

σ/ n
t =

Ȳ − μ
̂σȲ

=
Ȳ − μ

s/ n
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General Strategy
reject H0 if z falls outside critical values of z

2-tailed test

critical z values define middle 95% critical z value defines upper 95%

1-tailed test

z =
Ȳ − μ

σȲ
=

Ȳ − μ

σ/ n

standard normal distribution

General Strategy
reject H0 if t falls outside critical values of t

2-tailed test

critical t values define middle 95%

t =
Ȳ − μ

̂σȲ
=

Ȳ − μ

s/ n

critical t value defines upper 95%

1-tailed test

t distribution (df=4)

Possible Outcomes of Hypothesis Testing
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therefore we need only one criterion to decide if our observed score is unusually lower than 100. If we are
doing a z test, for example, then the criterion would be -1.64 for ↵ = 0.05, and -2.33 for ↵ = 0.01. If we
were doing a t test in R, we would type

> t.test(x=my.scores,alternative="less", mu=100)

On the other hand, if we wanted to determine if exposure to the toxin had increased IQ, then we would
evaluate the hypotheses

H0 : µ  100

H1 : µ > 100

with the R command

> t.test(x=my.scores,alternative="greater", mu=100)

0.5 Type I vs. Type II errors

We have said that rejecting the null hypothesis when it is true is a Type I error, and that the probability
of making such an error is ↵. Another kind of error occurs when we fail to reject the null hypothesis when
it is false. This type of mistake is called a Type II error, and the probability of it occurring is called �.
In fact, the two states of the world regarding H0 (i.e., it is either True or False) combined with the two
possible decisions we can make regarding H0 mean that there are four possible decision outcomes (see Table
1). Obviously, we would like to maximize our correct decisions, and so we should minimize the probability of
making both Type I (↵) and Type II (�)errors. Of course, Type I errors can be minimized by adopting very
small levels of ↵. Unfortunately, adopting a small ↵ will (all other things begin equal) lead to an increase
in �.

Table 1: Possible outcomes of hypothesis testing.

decision H0 is True H0 is False
reject H0: Type I (p = ↵) Correct (p = 1� � =power)

do not reject H0: Correct (p = 1� ↵) Type II error (p = �)

The probability of rejecting H0 when it is false is referred to as the power of a statistical test, and it
equals 1��. Obviously, the power of test depends on the size of the e↵ect being studied. In our IQ example,
for instance, it would be much easier to detect the e↵ect of the toxin if it reduced IQ by 50 points than if
it reduced IQ by only 1 point. Power also generally increases with increasing sample size. Do you see why?
(Hint: Think about what happens to the variation among sample means as sample size increases). Finally,
the power of a test declines as ↵ increases. The power of a t test can be calculated using R’s power.t.test()
command. The following example shows how to use the command to compute the power of a two-sided t

test:

> power.t.test(n=20,delta=5,sd=10,sig.level=0.05,type="one.sample",alternative="two.sided")

One-sample t test power calculation

n = 20

delta = 5

sd = 10

sig.level = 0.05

power = 0.5644829

alternative = two.sided
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Type I Error: reject H0 when it is true (alpha)

Type II Error: fail to reject H0 when it is false (beta)

Power = Probability of rejecting false H0 (1-beta) 

assumption of normal distribution

Central Limit Theorem
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z & t tests for means

• tests assume that sample means are distributed normally

• if scores are distributed normally, then means are, too

• suppose scores are NOT distributed normally?

• CENTRAL LIMIT THEOREM:

- irrespective of how the scores are distributed, the 

sample means will be distributed normally, provided 
that the sample size (n) is sufficiently large

Central Limit Theorem (Example)
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pop.values <- c(1,1,3,4,6,6); # population
set.seed(7321083)
n <- 10 # sample size
B <- 2000 # number of iterations
samp.mean <- rep(0,B)
for(kk in 1:B){
 # randomly sample population of scores:
cur.sample <- sample(pop.values,size=n,replace=T)
 # calculate and store mean:
samp.mean[kk] <- mean(cur.sample)
}

# video at https://www.simplypsychology.org/central-limit-theorem.html

μ = 3.5, σ2 = 5.1

Central Limit Theorem (Example)

near-normal probability 
distribution of means

quartz()
# plot histogram
require(MASS) # load MASS package
truehist(samp.mean,xlab=“Mean”,
+        ylab="Probability",xlim=c(0,7))
mtext(text=bquote("Sample Size"~n==.(n)))
# draw predicted normal distribution:
mu <- mean(pop.values) # mean
sigma <- sd(pop.values)/sqrt(n) # SEM
xvals <- seq(0,8,.1)
yvals <- dnorm(xvals,mu,sigma) # normal density
lines(xvals,yvals,type="l") # draw in plot window
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Central Limit Theorem (Example)
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near-normal probability 
distribution of means (n=10)

N(μ = 3.5, σ2 = 5.1/10 = 0.51)



2 independent samples

Comparing 2 independent means

• Given two independent sample means,  & 


- Question: are they “significantly different”?


• Define H0 & H1


- H0: true population difference is zero, 


- H1: true population difference is not zero, 


• Is the observed difference, , unusual when H0 is true?


• Need to know the distribution of  when H0 is true

Ȳa Ȳb

μa − μb = 0

μa − μb ≠ 0

Ȳa − Ȳb = 0

Ȳd = Ȳa − Ȳb

Comparing two independent means
• Given 2 populations of scores: means (µa & µb)  variances: (  & )


• Distributions of sample means: 


- ,   (via Central Limit Theorem)


• Distribution of difference :


- mean: 


- variance:  [COV == covariance]


- COV(A,B) is zero if A & B are independent, so  


-  shape is normal (via Central Limit Theorem)

σ2
a σ2

b

N(μa, σ2
a /n) N(μb, σ2

b /n)

Ȳd = (Ȳa − Ȳb)
μd = μa − μb

σ2
a

n
+

σ2
b

n
− 2 × COV(A, B)

σ2
d = σ2

Ȳa
+ σ2

Ȳb

N(μd, σ2
d)

Comparing 2 independent means
• observed  is a random sample from 


• is  unusual assuming H0 is true?


• express  as standardized distance from expected value


•  follows t distribution with df = n1 + n2 - 2


- df calculation assumes equal variance in two groups  


- when , t statistic follows t distribution with df < (n1 + n2 - 2)


• calculate probability of getting our t (or more extreme) when H0 is true


- reject H0 if p < alpha

Ȳd = (Ȳa − Ȳb) N(μd, σ2
d)

Ȳd

Ȳd

t =
Ȳd − μd

̂σd

s2
a = s2

b

s2
a ≠ s2

b



Effect of Spatial Uncertainty on Reaction Times
•measured simple reaction time for a spot of light

• stimulus presented at 1 of 4 locations

• each Ss detected spot in all 4 locations and RT was averaged across locations

• locations were either blocked or randomly intermixed

• 2 groups: Blocked vs Mixed was a between-subjects variable


- RT blocked: , 


- RT mixed: , 


- ∆ RT:  ,  


• Assuming , is our observed  unusual?


•Use null hypothesis significance testing:


- H0: ,    H1: ,    

Ȳ1 = 357 s1 = 83

Ȳ2 = 397 s2 = 53

Ȳd = − 40 sd = 22.02

μd = 0 Ȳd = − 45

μd = 0 μd ≠ 0 t = − 40/22.02 = − 1.82

> alpha <- .05
> t.test(x=blocked,y=mixed,
+        paired=FALSE,
+        var.equal=FALSE,
+        alternative="two.sided",
+        conf.level=1-alpha)

Welch Two Sample t-test
t = -1.8165, df = 32.286, p-value = 0.079
H1: true difference ≠ 0
95% CI:
 -84.84   4.84
sample estimates:
mean of x mean of y 
      357       397 

Spot Detection Reaction Times

2-tailed test, var.equal = FALSE

Notice df ≠ n1 + n2 - 2

> alpha <- .05
> t.test(x=blocked,y=mixed,
+        paired=FALSE,
+        var.equal=TRUE,
+        alternative="two.sided",
+        conf.level=1-alpha)

Two Sample t-test
t = -1.8165, df = 38, p-value = 0.077
H1: true difference ≠ 0
95% CI:
 -84.58   4.58
sample estimates:
mean of x mean of y 
      357       397 

Spot Detection Reaction Times

2-tailed test, var.equal = TRUE

Notice df = n1 + n2 - 2

Spot Detection Reaction Times

•We do not reject H0 


•However, we believe spatial uncertainty increases RT

- RTblocked < RTmixed

• So a 1-tailed test is appropriate


- H0: ,   H1: 


• Reject H0 if  is unusually negative

μd = 0

μd ≥ 0 μd < 0

(Ȳblocked − Ȳmixed)



> alpha <- .05
> t.test(x=blocked,y=mixed,
+        paired=FALSE,
+        alternative="less",
+        conf.level=1-alpha)

Welch Two Sample t-test
t = -1.82, df = 32.3, p-value = 0.039
H1: true difference < 0
95% CI:
    -Inf -2.7096
sample estimates:
mean of x mean of y 
      357       397

Spot Detection Reaction Times

1-tailed test, var.equal = FALSE

• H0: ,   H1: 


• alpha = 0.05

• reject H0

μd ≥ 0 μd < 0
What affects our decision about H0?

Possible Outcomes of Hypothesis Testing
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therefore we need only one criterion to decide if our observed score is unusually lower than 100. If we are
doing a z test, for example, then the criterion would be -1.64 for ↵ = 0.05, and -2.33 for ↵ = 0.01. If we
were doing a t test in R, we would type

> t.test(x=my.scores,alternative="less", mu=100)

On the other hand, if we wanted to determine if exposure to the toxin had increased IQ, then we would
evaluate the hypotheses

H0 : µ  100

H1 : µ > 100

with the R command

> t.test(x=my.scores,alternative="greater", mu=100)

0.5 Type I vs. Type II errors

We have said that rejecting the null hypothesis when it is true is a Type I error, and that the probability
of making such an error is ↵. Another kind of error occurs when we fail to reject the null hypothesis when
it is false. This type of mistake is called a Type II error, and the probability of it occurring is called �.
In fact, the two states of the world regarding H0 (i.e., it is either True or False) combined with the two
possible decisions we can make regarding H0 mean that there are four possible decision outcomes (see Table
1). Obviously, we would like to maximize our correct decisions, and so we should minimize the probability of
making both Type I (↵) and Type II (�)errors. Of course, Type I errors can be minimized by adopting very
small levels of ↵. Unfortunately, adopting a small ↵ will (all other things begin equal) lead to an increase
in �.

Table 1: Possible outcomes of hypothesis testing.

decision H0 is True H0 is False
reject H0: Type I (p = ↵) Correct (p = 1� � =power)

do not reject H0: Correct (p = 1� ↵) Type II error (p = �)

The probability of rejecting H0 when it is false is referred to as the power of a statistical test, and it
equals 1��. Obviously, the power of test depends on the size of the e↵ect being studied. In our IQ example,
for instance, it would be much easier to detect the e↵ect of the toxin if it reduced IQ by 50 points than if
it reduced IQ by only 1 point. Power also generally increases with increasing sample size. Do you see why?
(Hint: Think about what happens to the variation among sample means as sample size increases). Finally,
the power of a test declines as ↵ increases. The power of a t test can be calculated using R’s power.t.test()
command. The following example shows how to use the command to compute the power of a two-sided t

test:

> power.t.test(n=20,delta=5,sd=10,sig.level=0.05,type="one.sample",alternative="two.sided")

One-sample t test power calculation

n = 20

delta = 5

sd = 10

sig.level = 0.05

power = 0.5644829

alternative = two.sided

8

Type I Error: reject H0 when it is true (alpha)

Type II Error: fail to reject H0 when it is false (beta)

Power = Probability of rejecting false H0 (1-beta) 

What factors determine the Type I error rate?
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therefore we need only one criterion to decide if our observed score is unusually lower than 100. If we are
doing a z test, for example, then the criterion would be -1.64 for ↵ = 0.05, and -2.33 for ↵ = 0.01. If we
were doing a t test in R, we would type

> t.test(x=my.scores,alternative="less", mu=100)

On the other hand, if we wanted to determine if exposure to the toxin had increased IQ, then we would
evaluate the hypotheses

H0 : µ  100

H1 : µ > 100

with the R command

> t.test(x=my.scores,alternative="greater", mu=100)

0.5 Type I vs. Type II errors

We have said that rejecting the null hypothesis when it is true is a Type I error, and that the probability
of making such an error is ↵. Another kind of error occurs when we fail to reject the null hypothesis when
it is false. This type of mistake is called a Type II error, and the probability of it occurring is called �.
In fact, the two states of the world regarding H0 (i.e., it is either True or False) combined with the two
possible decisions we can make regarding H0 mean that there are four possible decision outcomes (see Table
1). Obviously, we would like to maximize our correct decisions, and so we should minimize the probability of
making both Type I (↵) and Type II (�)errors. Of course, Type I errors can be minimized by adopting very
small levels of ↵. Unfortunately, adopting a small ↵ will (all other things begin equal) lead to an increase
in �.

Table 1: Possible outcomes of hypothesis testing.

decision H0 is True H0 is False
reject H0: Type I (p = ↵) Correct (p = 1� � =power)

do not reject H0: Correct (p = 1� ↵) Type II error (p = �)

The probability of rejecting H0 when it is false is referred to as the power of a statistical test, and it
equals 1��. Obviously, the power of test depends on the size of the e↵ect being studied. In our IQ example,
for instance, it would be much easier to detect the e↵ect of the toxin if it reduced IQ by 50 points than if
it reduced IQ by only 1 point. Power also generally increases with increasing sample size. Do you see why?
(Hint: Think about what happens to the variation among sample means as sample size increases). Finally,
the power of a test declines as ↵ increases. The power of a t test can be calculated using R’s power.t.test()
command. The following example shows how to use the command to compute the power of a two-sided t

test:

> power.t.test(n=20,delta=5,sd=10,sig.level=0.05,type="one.sample",alternative="two.sided")

One-sample t test power calculation

n = 20

delta = 5

sd = 10

sig.level = 0.05

power = 0.5644829

alternative = two.sided

8



Type I error rate is determined by alpha

t distribution (df=19)

What factors determine the Power & Type II error rate?
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therefore we need only one criterion to decide if our observed score is unusually lower than 100. If we are
doing a z test, for example, then the criterion would be -1.64 for ↵ = 0.05, and -2.33 for ↵ = 0.01. If we
were doing a t test in R, we would type

> t.test(x=my.scores,alternative="less", mu=100)

On the other hand, if we wanted to determine if exposure to the toxin had increased IQ, then we would
evaluate the hypotheses

H0 : µ  100

H1 : µ > 100

with the R command

> t.test(x=my.scores,alternative="greater", mu=100)

0.5 Type I vs. Type II errors

We have said that rejecting the null hypothesis when it is true is a Type I error, and that the probability
of making such an error is ↵. Another kind of error occurs when we fail to reject the null hypothesis when
it is false. This type of mistake is called a Type II error, and the probability of it occurring is called �.
In fact, the two states of the world regarding H0 (i.e., it is either True or False) combined with the two
possible decisions we can make regarding H0 mean that there are four possible decision outcomes (see Table
1). Obviously, we would like to maximize our correct decisions, and so we should minimize the probability of
making both Type I (↵) and Type II (�)errors. Of course, Type I errors can be minimized by adopting very
small levels of ↵. Unfortunately, adopting a small ↵ will (all other things begin equal) lead to an increase
in �.

Table 1: Possible outcomes of hypothesis testing.

decision H0 is True H0 is False
reject H0: Type I (p = ↵) Correct (p = 1� � =power)

do not reject H0: Correct (p = 1� ↵) Type II error (p = �)

The probability of rejecting H0 when it is false is referred to as the power of a statistical test, and it
equals 1��. Obviously, the power of test depends on the size of the e↵ect being studied. In our IQ example,
for instance, it would be much easier to detect the e↵ect of the toxin if it reduced IQ by 50 points than if
it reduced IQ by only 1 point. Power also generally increases with increasing sample size. Do you see why?
(Hint: Think about what happens to the variation among sample means as sample size increases). Finally,
the power of a test declines as ↵ increases. The power of a t test can be calculated using R’s power.t.test()
command. The following example shows how to use the command to compute the power of a two-sided t

test:

> power.t.test(n=20,delta=5,sd=10,sig.level=0.05,type="one.sample",alternative="two.sided")

One-sample t test power calculation

n = 20

delta = 5

sd = 10

sig.level = 0.05

power = 0.5644829

alternative = two.sided
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What determines the Type II error rate?

What factors influence statistical power?

Power is influenced by alpha

When H0 is false, red is “correct rejection” and green is Type II error

Lower alpha makes is harder to reject a false H0.

alpha & power

• using alpha of .001 instead of .05 reduces Type I error

• but also increases Type II error…

- makes it harder to reject false H0

- and therefore reduces power



Power is greater for 1-tailed tests

H0:   H1: μ1 − μ2 ≥ 0 μ1 − μ2 < 0H0:   H1: μ1 − μ2 = 0 μ1 − μ2 ≠ 0

Easier to reject false H0 using focused, 1-tailed test

sample size

effect of sample size on power
• increasing sample size decreases standard error of mean

• consequently, it becomes easier to reject a false H0 (i.e., increased power)

When H0  is false,  becomes more unusual as n increasesμd = 0 Ȳd ≠ 0

̂σȲd
=

sd

n
Simple Reaction Times
• does visual processing speed differ across wavelength?

•measure simple reaction time for 2 wavelengths

• n=10; calculated RT difference for each S


- RT w1: , 


- RT w2: , 


- ∆ RT:  , 


• Assuming , is our observed  unusual?


•Use null hypothesis significance testing:


- H0: ,    H1: 

Ȳ1 = 357 s1 = 83

Ȳ2 = 367 s2 = 83

Ȳd = 10 sd = 64.29

μd = 0 Ȳd = 10

μd = 0 μd ≠ 0



Simple Reaction Times

data frame organization

> rt.df1
   sID  w1  w2     dRT
1   s1 291 304  12.450
2   s2 411 365 -46.205
3   s3 414 396 -17.631
4   s4 354 355   0.874
5   s5 242 393 150.332
6   s6 282 322  39.258
7   s7 288 250 -37.723
8   s8 450 531  81.118
9   s9 341 295 -46.437
10 s10 496 460 -36.036

difference scores

Simple Reaction Times

> t.test(rt.df1$w2,rt.df1$w1,mu=0,
+        paired=T,
+        alternative="two.sided")

Paired t-test
t = 0.5, df = 9, p-value = 0.6
H1: true mean difference ≠ 0
95% CI:
 -36  56
sample estimates:
mean difference 
             10

> t.test(rt.df1$dRT,mu=0,
alternative="two.sided")

One Sample t-test
t = 0.5, df = 9, p-value = 0.6
H1: true mean ≠ 0
95% CI:
 -36  56
sample estimates:
mean of x 
       10 

paired samplesdifference scores

Simple Reaction Times (n=100)
• repeat experiment with larger sample

• n=100; calculated RT difference for each S


- RT w1: , 


- RT w2: , 


- ∆ RT:  , 


• Assuming , is our observed  unusual?


•Use null hypothesis significance testing:


- H0: ,    H1: 

Ȳ1 = 357 s1 = 83

Ȳ2 = 367 s2 = 83

Ȳd = 10 sd = 64.29

μd = 0 Ȳ

μd = 0 μd ≠ 0

same values as before

Simple Reaction Times

difference scores

> t.test(rt.df1$dRT,mu=0,
+        alternative="two.sided")

One Sample t-test
t = 1.5554, df = 99, p-value = 0.123
H1: true mean ≠ 0
95% CI:
 -2.756833 22.756833
sample estimates:
mean of x 
       10

n = 100

> t.test(rt.df1$dRT,mu=0,
alternative="two.sided")

One Sample t-test
t = 0.5, df = 9, p-value = 0.6
H1: true mean ≠ 0
95% CI:
 -36  56
sample estimates:
mean of x 
       10 

n = 10



Simple Reaction Times (n=1000)
• repeat experiment with very large sample

• n=1000; calculated RT difference for each S


- RT w1: , 


- RT w2: , 


- ∆ RT:  , 


• Assuming , is our observed  unusual?


•Use null hypothesis significance testing:


- H0: ,    H1: 

Ȳ1 = 357 s1 = 83

Ȳ2 = 367 s2 = 83

Ȳd = 10 sd = 64.29

μd = 0 Ȳ

μd = 0 μd ≠ 0

same values as before

Simple Reaction Times

difference scores & paired samples

> t.test(rt.df3$dRT,mu=0,
+        alternative="two.sided")

One Sample t-test
t = 4.9187, df = 999, p-value < 0.001
H1: true mean ≠ 0
95% CI:
  6.01041 13.98959
sample estimates:
mean of x 
       10

n = 1000

we now reject H0… increasing sample size increased our power

> t.test(rt.df1$dRT,mu=0,
alternative="two.sided")

One Sample t-test
t = 0.5, df = 9, p-value = 0.6
H1: true mean ≠ 0
95% CI:
 -36  56
sample estimates:
mean of x 
       10 

n = 10

Sample Size & Statistical Power

Power = p(correctly rejecting a false H0) = 1 - (Type II Error Rate)

> power.t.test(n=10,

+              delta=10,

+              sd=64.29,

+              type="one.sample",

+              alternative="two.sided",

+              power=NULL)


1-sample power calculation 

n = 10

delta = 10

sd = 64.29152

sig.level = 0.05

power = 0.06450793

alternative = two.sided

> power.t.test(n=100,

+              delta=10,

+              sd=64.29,

+              type="one.sample",

+              alternative="two.sided",

+              power=NULL)


1-sample power calculation 

n = 100

delta = 10

sd = 64.29152

sig.level = 0.05

power = 0.337378

alternative = two.sided

> power.t.test(n=1000,

+              delta=10,

+              sd=64.29,

+              type="one.sample",

+              alternative="two.sided",

+              power=NULL)


1-sample power calculation 

n = 1000

delta = 10

sd = 64.29152

sig.level = 0.05

power = 0.9984314

alternative = two.sided

effect size



Influence of effect size on statistical power

• big effects are easier to detect than small effects 

• two-sample case:


- H0: ,  H1: 


- easier to reject H0 when  or 


• one-sample case:


- H0: ,  H1: 


- easier to reject H0 when  or 

μ1 − μ2 = 0 μ1 − μ2 ≠ 0
(μ1 − μ2 ≪ 0) (μ1 − μ2 ≫ 0)

μd = 0 μd ≠ 0
(μd ≪ 0) (μd ≫ 0)

Effect Size & Statistical Power

Easier to reject false H0  when true μd = 0 μd ≫ 0

> power.t.test(n=20,

+              delta=20,

+              sd=100,

+              type="one.sample",

+              alternative="two.sided",

+              power=NULL)


1-sample power calculation 

n = 20

delta = 20

sd = 100

sig.level = 0.05

power = 0.133

alternative = two.sided

> power.t.test(n=20,

+              delta=40,

+              sd=100,

+              type="one.sample",

+              alternative="two.sided",

+              power=NULL)


1-sample power calculation 

n = 20

delta = 40

sd = 100

sig.level = 0.05

power = 0.397

alternative = two.sided

> power.t.test(n=sampleSize,

+              delta=80,

+              sd=100,

+              type="one.sample",

+              alternative="two.sided",

+              power=NULL)


1-sample power calculation 

n = 20

delta = 80

sd = 100

sig.level = 0.05

power = 0.924

alternative = two.sided

Effect Size

• 2 types of effect size measures:

- d: standardized differences (distances) between means

- r2: measures of association 

‣ % variance accounted for by grouping variable


• there are MANY varieties of “d” and “r” measures:

- we will consider just 1 variety of d here…

- (we will consider more as we go through the term)

• ideally, measures should be invariant to sample size

Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs.

Lakens D. Front Psychol. 2013 Nov 26;4:863. doi: 10.3389/fpsyg.2013.00863.

Cohen’s d for RT (wavelength) study

cohens_d in effectsize library ̂d =

0 − ̂μd

̂σd
=

0 − Ȳd

sd> cohens_d(x=rt.df1$dRT)
Cohen's d |        95% CI
-------------------------
0.16      | [-0.47, 0.78]

> cohens_d(x=rt.df2$dRT)
Cohen's d |        95% CI
-------------------------
0.16      | [-0.04, 0.35]

> cohens_d(x=rt.df3$dRT)
Cohen's d |       95% CI
------------------------
0.16      | [0.09, 0.22]

n = 10

n = 100

n = 1000

https://pubmed.ncbi.nlm.nih.gov/24324449/


factors affecting decision outcome
• Type I error: (alpha, significance level, critical p value)


• Power & Type II error:

- alpha (Type I error)

- general vs. focused statistical tests

‣ 2-tailed vs 1-tailed t tests

- sample size

- effect size

equivalence tests

interpreting non-significant t tests

Interpreting non-significant t tests

• An experiment compares drugs A & B

• Experimenter wants to know if 2 drugs yield same outcome


‣ H0:      H1: 


• Conduct a significance test that is not significant (i.e., p>0.05)

• Can we conclude that the two drugs are the same?

μA − μB = 0 μA − μB ≠ 0

Interpreting Non-significant 2-sided Tests

• Can we conclude that the two drugs are the same?

•No. Why not?

• Failure to attain p<0.05 may be due to low power…

- small sample size and/or noisy outcome measure

- absence of evidence is not evidence of absence

•Only conclude we “do not reject H0”

• Can we make a stronger statement?

- e.g., The two drugs have “equivalent” outcomes



Equivalence Tests

• Standard NHST


- H0: ; H1: 


• Equivalence tests reverse H0 & H1:


- H0: there is a difference 


- H1: there is no difference 


- try to reject H0 with two 1-sided tests

(μA − μB) = 0 μA − μB ≠ 0

(μA − μB) ≠ 0

(μA − μB) = 0
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0.015, the null hypothesis should consist of a range of 
values around 0.015 that can be considered trivially 
small. The researcher could, for example, test if the 
difference is smaller than −0.005 or larger than 0.035. 
This test against two bounds, with H0 being a range 
rather than one value (see Fig. 1b), is known as a 
minimal-effects test (Murphy, Myors, & Wolach, 2014).

Equivalence tests can be seen as the opposite of 
minimal-effects tests: They examine whether the 

hypothesis that there are effects extreme enough to be 
considered meaningful can be rejected (see Fig. 1c). 
Note that rejecting the hypothesis of a meaningful effect 
does not imply that there is no effect at all. In this 
example, the researcher can perform an equivalence 
test to examine whether the gender difference in appli-
cation rates is at least as extreme as the smallest effect 
size of interest (SESOI). After an extensive discussion 
with experts, the researcher decides that as long as the 
gender difference does not deviate from the population 
difference by more than .06, it is too small to care 
about. Given an expected true difference in the popula-
tion of .015, the researcher will test if the observed 
difference falls outside the boundary values (or equiva-
lence bounds) of −.055 and .075. If differences at least 
as extreme as these boundary values can be rejected 
in two one-sided tests (also known as one-tailed tests; 
i.e., the TOST procedure), the researcher will conclude 
that the application rates are statistically equivalent; the 
gender difference will be considered trivially small, and 
no money will be spent on addressing a gender differ-
ence in participation. When we refer to values as being 
“statistically equivalent” or to a “conclusion of statistical 
equivalence,” we mean the difference between groups 
is smaller than what is considered meaningful and sta-
tistically falls within the interval indicated by the equiv-
alence bounds.

In any one-sided test, for an alpha level of .05, one 
can reject H0 when the 90% confidence interval (CI) 
around the observed estimate is in the predicted direc-
tion and does not contain the value the estimate is 
being tested against (e.g., 0). In the TOST procedure, 
the first one-sided test is used to test the estimate 
against values at least as extreme as the lower equiva-
lence bound (∆L) and the second one-sided test is used 
to test the estimate against values at least as extreme 
as the upper equivalence bound (∆U). Even though the 
TOST procedure consists of two one-sided tests, it is 
not necessary to control for multiple comparisons 
because both tests need to be statistically significant 
for the researcher to draw a conclusion of statistical 
equivalence. Consequently, when reporting an equiva-
lence test, it suffices to report the one-sided test with 
the smaller test statistic (e.g., t) and thus the larger p 
value. A conclusion of statistical equivalence is war-
ranted when the larger of the two p values is smaller 
than alpha. If the observed effect is neither statistically 
different from zero nor statistically equivalent, there is 
insufficient data to draw conclusions. Further studies 
are needed, and they can be analyzed using a (small-
scale) meta-analysis. The additional data will narrow 
the confidence interval around the observed effect, 
allowing the researcher to reject the null, reject effects 
at least as extreme as the SESOI, or both. In null-
hypothesis significance tests, large sample sizes are 
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H 1

H 1

H 1

H 1 H 0
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0
Effect Size

Classic Null-Hypothesis Significance Test (Two Sided)
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Effect Size
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∆L 0 ∆U

Effect Size

Equivalence Test
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0 ∆
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a

b

c

d

Fig. 1. Illustration of a null hypothesis (H0) and alternative hypoth-
esis (H1) for each of four different types of significance tests. The 
null-hypothesis significance test (a) tests if the null hypothesis that 
an effect is equal to zero can be rejected. The minimal-effects test 
(b) tests if the null hypothesis that an effect falls between the lower 
equivalence bound, ∆L, and the upper equivalence bound, ∆U, can 
be rejected. The equivalence test (c) tests if the null hypothesis that 
an effect is at least as small as ∆L or at least as large as ∆U can be 
rejected. The inferiority test (d) tests if the null hypothesis that an 
effect is at least as large as ∆ can be rejected.
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0.015, the null hypothesis should consist of a range of 
values around 0.015 that can be considered trivially 
small. The researcher could, for example, test if the 
difference is smaller than −0.005 or larger than 0.035. 
This test against two bounds, with H0 being a range 
rather than one value (see Fig. 1b), is known as a 
minimal-effects test (Murphy, Myors, & Wolach, 2014).

Equivalence tests can be seen as the opposite of 
minimal-effects tests: They examine whether the 

hypothesis that there are effects extreme enough to be 
considered meaningful can be rejected (see Fig. 1c). 
Note that rejecting the hypothesis of a meaningful effect 
does not imply that there is no effect at all. In this 
example, the researcher can perform an equivalence 
test to examine whether the gender difference in appli-
cation rates is at least as extreme as the smallest effect 
size of interest (SESOI). After an extensive discussion 
with experts, the researcher decides that as long as the 
gender difference does not deviate from the population 
difference by more than .06, it is too small to care 
about. Given an expected true difference in the popula-
tion of .015, the researcher will test if the observed 
difference falls outside the boundary values (or equiva-
lence bounds) of −.055 and .075. If differences at least 
as extreme as these boundary values can be rejected 
in two one-sided tests (also known as one-tailed tests; 
i.e., the TOST procedure), the researcher will conclude 
that the application rates are statistically equivalent; the 
gender difference will be considered trivially small, and 
no money will be spent on addressing a gender differ-
ence in participation. When we refer to values as being 
“statistically equivalent” or to a “conclusion of statistical 
equivalence,” we mean the difference between groups 
is smaller than what is considered meaningful and sta-
tistically falls within the interval indicated by the equiv-
alence bounds.

In any one-sided test, for an alpha level of .05, one 
can reject H0 when the 90% confidence interval (CI) 
around the observed estimate is in the predicted direc-
tion and does not contain the value the estimate is 
being tested against (e.g., 0). In the TOST procedure, 
the first one-sided test is used to test the estimate 
against values at least as extreme as the lower equiva-
lence bound (∆L) and the second one-sided test is used 
to test the estimate against values at least as extreme 
as the upper equivalence bound (∆U). Even though the 
TOST procedure consists of two one-sided tests, it is 
not necessary to control for multiple comparisons 
because both tests need to be statistically significant 
for the researcher to draw a conclusion of statistical 
equivalence. Consequently, when reporting an equiva-
lence test, it suffices to report the one-sided test with 
the smaller test statistic (e.g., t) and thus the larger p 
value. A conclusion of statistical equivalence is war-
ranted when the larger of the two p values is smaller 
than alpha. If the observed effect is neither statistically 
different from zero nor statistically equivalent, there is 
insufficient data to draw conclusions. Further studies 
are needed, and they can be analyzed using a (small-
scale) meta-analysis. The additional data will narrow 
the confidence interval around the observed effect, 
allowing the researcher to reject the null, reject effects 
at least as extreme as the SESOI, or both. In null-
hypothesis significance tests, large sample sizes are 
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Fig. 1. Illustration of a null hypothesis (H0) and alternative hypoth-
esis (H1) for each of four different types of significance tests. The 
null-hypothesis significance test (a) tests if the null hypothesis that 
an effect is equal to zero can be rejected. The minimal-effects test 
(b) tests if the null hypothesis that an effect falls between the lower 
equivalence bound, ∆L, and the upper equivalence bound, ∆U, can 
be rejected. The equivalence test (c) tests if the null hypothesis that 
an effect is at least as small as ∆L or at least as large as ∆U can be 
rejected. The inferiority test (d) tests if the null hypothesis that an 
effect is at least as large as ∆ can be rejected.

Equivalence Tests
• Smallest Effect Size of Interest SESOI (∆L & ∆U)

- ∆L & ∆U are lower & upper bounds of equivalence region (i.e., )


- H0:  OR  [i.e., two means are not equivalent]


- H1:  AND  [i.e., two means are equivalent]


• evaluate H0 with two 1-tailed t-tests:


- H0L:     H1L:  [is difference > ?]


- H0U:     H1U:  [is difference < ?] 


• if both 1-tailed tests are significant, then


- we accept H1L:  AND H1U:  

- difference is within  ± SESOI

- e.g., two groups are “equivalent”

μA ≈ μB

(μA − μB) ≤ ΔL (μA − μB) ≥ ΔU

(μA − μB) > ΔL (μA − μB) < ΔU

(μA − μB) ≤ ΔL (μA − μB) > ΔL ΔL
(μA − μB) ≥ ΔU (μA − μB) < ΔU ΔU

(μA − μB) > ΔL (μA − μB) < ΔU
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0.015, the null hypothesis should consist of a range of 
values around 0.015 that can be considered trivially 
small. The researcher could, for example, test if the 
difference is smaller than −0.005 or larger than 0.035. 
This test against two bounds, with H0 being a range 
rather than one value (see Fig. 1b), is known as a 
minimal-effects test (Murphy, Myors, & Wolach, 2014).

Equivalence tests can be seen as the opposite of 
minimal-effects tests: They examine whether the 

hypothesis that there are effects extreme enough to be 
considered meaningful can be rejected (see Fig. 1c). 
Note that rejecting the hypothesis of a meaningful effect 
does not imply that there is no effect at all. In this 
example, the researcher can perform an equivalence 
test to examine whether the gender difference in appli-
cation rates is at least as extreme as the smallest effect 
size of interest (SESOI). After an extensive discussion 
with experts, the researcher decides that as long as the 
gender difference does not deviate from the population 
difference by more than .06, it is too small to care 
about. Given an expected true difference in the popula-
tion of .015, the researcher will test if the observed 
difference falls outside the boundary values (or equiva-
lence bounds) of −.055 and .075. If differences at least 
as extreme as these boundary values can be rejected 
in two one-sided tests (also known as one-tailed tests; 
i.e., the TOST procedure), the researcher will conclude 
that the application rates are statistically equivalent; the 
gender difference will be considered trivially small, and 
no money will be spent on addressing a gender differ-
ence in participation. When we refer to values as being 
“statistically equivalent” or to a “conclusion of statistical 
equivalence,” we mean the difference between groups 
is smaller than what is considered meaningful and sta-
tistically falls within the interval indicated by the equiv-
alence bounds.

In any one-sided test, for an alpha level of .05, one 
can reject H0 when the 90% confidence interval (CI) 
around the observed estimate is in the predicted direc-
tion and does not contain the value the estimate is 
being tested against (e.g., 0). In the TOST procedure, 
the first one-sided test is used to test the estimate 
against values at least as extreme as the lower equiva-
lence bound (∆L) and the second one-sided test is used 
to test the estimate against values at least as extreme 
as the upper equivalence bound (∆U). Even though the 
TOST procedure consists of two one-sided tests, it is 
not necessary to control for multiple comparisons 
because both tests need to be statistically significant 
for the researcher to draw a conclusion of statistical 
equivalence. Consequently, when reporting an equiva-
lence test, it suffices to report the one-sided test with 
the smaller test statistic (e.g., t) and thus the larger p 
value. A conclusion of statistical equivalence is war-
ranted when the larger of the two p values is smaller 
than alpha. If the observed effect is neither statistically 
different from zero nor statistically equivalent, there is 
insufficient data to draw conclusions. Further studies 
are needed, and they can be analyzed using a (small-
scale) meta-analysis. The additional data will narrow 
the confidence interval around the observed effect, 
allowing the researcher to reject the null, reject effects 
at least as extreme as the SESOI, or both. In null-
hypothesis significance tests, large sample sizes are 
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Fig. 1. Illustration of a null hypothesis (H0) and alternative hypoth-
esis (H1) for each of four different types of significance tests. The 
null-hypothesis significance test (a) tests if the null hypothesis that 
an effect is equal to zero can be rejected. The minimal-effects test 
(b) tests if the null hypothesis that an effect falls between the lower 
equivalence bound, ∆L, and the upper equivalence bound, ∆U, can 
be rejected. The equivalence test (c) tests if the null hypothesis that 
an effect is at least as small as ∆L or at least as large as ∆U can be 
rejected. The inferiority test (d) tests if the null hypothesis that an 
effect is at least as large as ∆ can be rejected.

Two One-Sided Test Method

TOST

TOST procedure
• Equivalence test hypotheses

- define lower bound (LB) & upper bound (UB)


- H0:  OR          [not equivalent]


- H1:  AND       [equivalent]


• Evaluate H0 with two 1-tailed tests


- lower bound: H0L:  H1L: 


- upper bound: H0U:  H1U: 


• If both 1-tailed tests are significant 


- then reject H0 (not equivalent) 

(μd ≤ LB) (μd ≥ UB)
(μd > LB) (μd < UB)

(μd ≤ LB) (μd > LB)
(μd ≥ UB) (μd < UB)

(p < α)
(p < α)



Equivalence Test Example

Two One-tailed Significance Tests (TOST)

> N <- 2500
> mu1 <- 100.5
> mu2 <- 100
> stdev <- 7
> set.seed(20912)
> x <- rnorm(N,mu1,stdev)
> y <- rnorm(N,mu2,stdev)

> # Is observed difference between
> # upper & lower bounds?
> UPPER.BOUND <- 1 # [  ]
> LOWER.BOUND <- -1 # [  ]
> # H0: (diff < -1) OR (diff > 1)
> # H1: (diff > -1) AND (diff < 1)

ΔU
ΔL

> # is mean > lower bound?
> t.test(x,y,mu=LOWER.BOUND,
+        alternative=“greater")
t = 8.002, df = 4997, p-value = < .0001
H1L: true difference is > -1
95% CI: 0.2502728       Inf
sample estimates:
mean of x mean of y 
 100.5765  100.0026 

HOL : μD ≤ ΔL

Equivalence Test Example

Two One-tailed Significance Tests (TOST)

> N <- 2500
> mu1 <- 100.5
> mu2 <- 100
> stdev <- 7
> set.seed(20912)
> x <- rnorm(N,mu1,stdev)
> y <- rnorm(N,mu2,stdev)

> # Is observed difference between
> # upper & lower bounds?
> UPPER.BOUND <- 1 # [  ]
> LOWER.BOUND <- -1 # [  ]
> # H0: (diff < -1) OR (diff > 1)
> # H1: (diff > -1) AND (diff < 1)

ΔU
ΔL

> # is mean < upper bound?
> t.test(x,y,mu=UPPER.BOUND,
+        alternative=“less")
t = -2.167, df = 4997, p-value = 0.015
H1U: true difference < 1
95% CI:  -Inf 0.8974459
sample estimates:
mean of x mean of y 
 100.5765  100.0026 

HOU : μD ≥ ΔU

Two-sided Confidence Interval Method

Using 1 - (2 x alpha) two-sided CI

Equivalence Testing using 2-sided CI

• Equivalence test using alpha = 0.05

- H0: means are not equivalent

- H1: means are equivalent

• Evaluate H0 using 2-sided t test

- inspect 1 - (2 x 0.05) = 90% Confidence Interval

- reject H0 (p < .05) if CI falls within equivalence zone 



•Let alpha be set for a 1-sided test (alpha = 0.05)

•Probability of interval containing true population difference = 1-0.05 = 0.95

•Probability of true difference being less than lower limit of CI is 0.05

•Test of Lower Bound: H0L:  H1L:  


•If  CI does not include ∆L, then reject H0L in favor of H1L

(i.e., true difference between means is greater than ∆L)


•In this case we reject H0L (p < .05) 

(μ1 − μ2) ≤ ΔL (μ1 − μ2) > ΔL

•Let alpha be set for a 1-sided test (alpha = 0.05)

•Probability of interval containing true population difference = 1-0.05 = 0.95

•Probability of true difference being greater than upper limit of CI is 0.05

•Test of Upper Bound: H0U:  H1U:  


•If CI does not include ∆U then reject H0U in favor of H1U

(i.e., true difference between means is less than ∆U)


•In this case we do NOT reject H0U

(μ1 − μ2) ≥ ΔU (μ1 − μ2) < ΔU



•Let alpha be set for a 2-sided test (alpha = 2 x 0.05)

•Probability of CI containing true population difference = (1 - 2 x alpha) = 0.90

(i.e., probability of true difference lying below OR above 2-sided CI = 0.10)

• Equivalence Test Hypothesis: 

- H0: {  OR }            [not equivalent] 

- H1: {  AND }     [equivalent]


(μA − μB) ≤ ΔL (μA − μB) ≥ ΔU
(μA − μB) > ΔL (μA − μB) < ΔU

•If CI falls within the equivalence region, then  is unusually small assuming H0 is true.


- we reject H0 in favor of H1 — i.e., the two means are “equivalent” — p < .05

•In this case we do NOT reject H0 (i.e., that the two means are not equivalent)


- because we cannot reject hypothesis that 

Ȳd

(μA − μB) ≥ ΔU

•Equivalence Test Hypothesis


- H0: {  OR }       H1: {  AND } 


• If 90% CI is within the equivalence region, then  is unusually small assuming H0 is true.


- we would reject H0 in favor of H1 — i.e., the two means are “equivalent” — p < .05

•In this case we DO reject H0 in favor of H1 [means are equivalent]

(μA − μB) ≤ ΔL (μA − μB) ≥ ΔU (μA − μB) > ΔL (μA − μB) < ΔU

Ȳd

Testing Lower & Upper bounds of Equivalence Region

(is difference in-between ∆L and ∆U?)

0 ȲD

equivalence region

ΔL ΔU

p = αp = (1 − 2α)p = α

H0
H0H1



Equivalence Test Example

using two-sided 90% confidence interval

> UPPER.BOUND <- 1 [  ]
> LOWER.BOUND <- -1 [  ]

ΔU
ΔL

> alpha <- 0.05 # equivalence test alpha
> t.test(x,y,mu=0,
+       alternative=“two.sided”,
+       conf.level=(1-2*alpha) )
t = 2.9176, df = 4997, p-value = 0.003543
H1: true difference ≠ 0
90% CI: 0.2502728 0.8974459
sample estimates:
mean of x mean of y 
 100.5765  100.0026 

> (0.2502728 > LOWER.BOUND)
[1] TRUE
> (0.8974459 < UPPER.BOUND)
[1] TRUE

> # 90% CI falls within equivalence zone
> # reject H0 in favour of H1 (p < 0.05)

H0: {  OR } 


     H1: {  AND }

(μx − μy) ≤ ΔL (μA − μB) ≥ ΔU

(μA − μB) > ΔL (μA − μB) < ΔU

upper bound: 95% CI = [-Inf, 0.897]
lower bound: 95% CI = [0.2502, Inf]

1-sided test results

Null Hypothesis vs Equivalence Tests

Equivalent Not Equivalent

Not Different + ?

Different ? +

Null Hypothesis 
Significance Test

Equivalence Test

Four possible outcomes when evaluating difference between 2 group means

NHST vs Equivalence Tests (4 outcomes)

difference between means 0 ∆U∆L

“Statistically Equivalent & Not Different”

“Statistically Equivalent & Different”

“Not Equivalent & Not Different”

“Not Equivalent & Different”

equivalence region

Lakens, D. Equivalence tests: A practical primer for t tests, correlations, and meta-
analyses. Social Psychological & Personality Science, 8(4), 355-362.

What do p values mean?
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What does a significant p-value mean?

• A significant p-value indicates that the result is unusual

- assuming H0 is true (and assumptions are correct)

• That is ALL that it means
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therefore we need only one criterion to decide if our observed score is unusually lower than 100. If we are
doing a z test, for example, then the criterion would be -1.64 for ↵ = 0.05, and -2.33 for ↵ = 0.01. If we
were doing a t test in R, we would type

> t.test(x=my.scores,alternative="less", mu=100)

On the other hand, if we wanted to determine if exposure to the toxin had increased IQ, then we would
evaluate the hypotheses

H0 : µ  100

H1 : µ > 100

with the R command

> t.test(x=my.scores,alternative="greater", mu=100)

0.5 Type I vs. Type II errors

We have said that rejecting the null hypothesis when it is true is a Type I error, and that the probability
of making such an error is ↵. Another kind of error occurs when we fail to reject the null hypothesis when
it is false. This type of mistake is called a Type II error, and the probability of it occurring is called �.
In fact, the two states of the world regarding H0 (i.e., it is either True or False) combined with the two
possible decisions we can make regarding H0 mean that there are four possible decision outcomes (see Table
1). Obviously, we would like to maximize our correct decisions, and so we should minimize the probability of
making both Type I (↵) and Type II (�)errors. Of course, Type I errors can be minimized by adopting very
small levels of ↵. Unfortunately, adopting a small ↵ will (all other things begin equal) lead to an increase
in �.

Table 1: Possible outcomes of hypothesis testing.

decision H0 is True H0 is False
reject H0: Type I (p = ↵) Correct (p = 1� � =power)

do not reject H0: Correct (p = 1� ↵) Type II error (p = �)

The probability of rejecting H0 when it is false is referred to as the power of a statistical test, and it
equals 1��. Obviously, the power of test depends on the size of the e↵ect being studied. In our IQ example,
for instance, it would be much easier to detect the e↵ect of the toxin if it reduced IQ by 50 points than if
it reduced IQ by only 1 point. Power also generally increases with increasing sample size. Do you see why?
(Hint: Think about what happens to the variation among sample means as sample size increases). Finally,
the power of a test declines as ↵ increases. The power of a t test can be calculated using R’s power.t.test()
command. The following example shows how to use the command to compute the power of a two-sided t

test:

> power.t.test(n=20,delta=5,sd=10,sig.level=0.05,type="one.sample",alternative="two.sided")

One-sample t test power calculation

n = 20

delta = 5

sd = 10

sig.level = 0.05

power = 0.5644829

alternative = two.sided

8

What does a significant p-value mean?

• A significant p-value indicates that the result is unusual

- assuming H0 is true (and assumptions are correct)

• That is ALL that it means

- (1-p) is not equal to the probability of replicating result…

‣ often, p(replication) << (1-p)
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What does a significant p-value mean?

• A significant p-value indicates that the result is unusual

- assuming H0 is true and assumptions are correct

• That is ALL it means

- (1-p) is not equal to the probability of replicating result

- p is not equal to the probability that H0 is TRUE…

‣ p is not equal to the probability that the result is due to chance
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alpha ≠ p(H0 is TRUE)
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therefore we need only one criterion to decide if our observed score is unusually lower than 100. If we are
doing a z test, for example, then the criterion would be -1.64 for ↵ = 0.05, and -2.33 for ↵ = 0.01. If we
were doing a t test in R, we would type

> t.test(x=my.scores,alternative="less", mu=100)

On the other hand, if we wanted to determine if exposure to the toxin had increased IQ, then we would
evaluate the hypotheses

H0 : µ  100

H1 : µ > 100

with the R command

> t.test(x=my.scores,alternative="greater", mu=100)

0.5 Type I vs. Type II errors

We have said that rejecting the null hypothesis when it is true is a Type I error, and that the probability
of making such an error is ↵. Another kind of error occurs when we fail to reject the null hypothesis when
it is false. This type of mistake is called a Type II error, and the probability of it occurring is called �.
In fact, the two states of the world regarding H0 (i.e., it is either True or False) combined with the two
possible decisions we can make regarding H0 mean that there are four possible decision outcomes (see Table
1). Obviously, we would like to maximize our correct decisions, and so we should minimize the probability of
making both Type I (↵) and Type II (�)errors. Of course, Type I errors can be minimized by adopting very
small levels of ↵. Unfortunately, adopting a small ↵ will (all other things begin equal) lead to an increase
in �.

Table 1: Possible outcomes of hypothesis testing.

decision H0 is True H0 is False
reject H0: Type I (p = ↵) Correct (p = 1� � =power)

do not reject H0: Correct (p = 1� ↵) Type II error (p = �)

The probability of rejecting H0 when it is false is referred to as the power of a statistical test, and it
equals 1��. Obviously, the power of test depends on the size of the e↵ect being studied. In our IQ example,
for instance, it would be much easier to detect the e↵ect of the toxin if it reduced IQ by 50 points than if
it reduced IQ by only 1 point. Power also generally increases with increasing sample size. Do you see why?
(Hint: Think about what happens to the variation among sample means as sample size increases). Finally,
the power of a test declines as ↵ increases. The power of a t test can be calculated using R’s power.t.test()
command. The following example shows how to use the command to compute the power of a two-sided t

test:

> power.t.test(n=20,delta=5,sd=10,sig.level=0.05,type="one.sample",alternative="two.sided")

One-sample t test power calculation

n = 20

delta = 5

sd = 10

sig.level = 0.05

power = 0.5644829

alternative = two.sided
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alpha = probability of making Type I error given that H0 is True

alpha ≠ probability that H0 is True



What does a significant p-value mean?

• A significant p-value indicates that the result is unusual

- assuming H0 is true and assumptions are correct

• That is ALL it means

- (1-p) is not equal to the probability of replicating result

- p is not equal to the probability that H0 is TRUE…

‣ p is not equal to the probability that the result is due to chance 

- p is not equal to the probability of making a false discovery…
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1000

100

900

True state 
of H0

False

True

Result of Significance 
Test

20

Correctly Reject 
H0

Type II Error 
(miss)

80

855

Type I Error

(false alarm)

Correctly Fail to 
Reject H0

45

45 out of 125  
“discoveries” are 
false alarms

Do Not Reject H0

Reject H0

Do Not Reject H0

Reject H0

alpha = 0.05

beta = 0.20


power = 0.80
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What does a significant p-value mean?
• A significant p-value indicates that the result is unusual

- assuming null hypothesis is true and assumptions are correct

• That is ALL it means

- (1-p) is not equal to the probability of replicating the result

- p is not equal to the probability that H0 is TRUE…

‣ p is not equal to the probability that the result is due to chance 

- p is not equal to the probability of making a false discovery

- p is not a measure of the strength of evidence in favour of H0

- when H0 is true, all p values are EQUALLY likely (!)
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What do p-values mean?
• A p value is the probability of obtaining a result that is at least as 

extreme as observed result when H0 is true

- it measures compatibility of our data with a specified model

• p values are statements about the data, not the hypotheses

•Used properly, p values control Type I error [N.B. this is good!]

- When H0 is TRUE, in the long run Type I error rate equals alpha

- But alpha does not equal the False Discovery Rate

‣ FDR depends on alpha, statistical power, and p(H0 is True) 
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The power is 0.56. What does this probability mean? If our sample size is 20, and if the scores are selected
from a population that has a standard deviation of 10 and a mean that is 5 less than the mean in the
null hypothesis, then the probability is 0.56 that we will (correctly) reject the null hypothesis. So, if the
population mean of our IQ scores is 95, then we have a 56% chance of correctly rejecting H0 when we use a
sample size of 20. If we evaluate a one-tailed null hypothesis, then the power increases to 0.69:

> power.t.test(n=20,delta=5,sd=10,sig.level=0.05,type="one.sample",alternative="one.sided")

One-sample t test power calculation

n = 20

delta = 5

sd = 10

sig.level = 0.05

power = 0.6951493

alternative = one.sided

This increase in power is one very good reason for using one-tailed tests whenever possible.

0.6 what do p-values mean?

A p value indicates the probability of getting our score (Ȳ = 93), or one that is more extreme (i.e., further
from the mean), assuming that the null hypothesis is true. We can write this more formally with the notation
that is used to express conditional probabilities: the probability of getting our data (or data that are more
extreme) given that the null hypothesis (H0) is true is P (data|H0). Notice that this probability is not quite
the same as the probability that H0 is true given our data, or P (H0|data), which is usually what we want
to know. It is vitally important that you understand that these two conditional probabilities
are not the same:

P (data|H0) 6= P (H0|data)

In fact, there is no way to derive P (H0|data) from P (data|H0) in the absence of other information about
the a priori probability that H0 is true. Another common mistake is to interpret a p value as indicating
the probability that a particular finding would be replicated: for instance that a p value of .01 means
that if the experiment was conducted many times then a significant result would be obtained 99% of the
time. Such an interpretation is incorrect: the probability of obtaining a statistically significant result when
the null hypothesis is false depends on the e↵ect size, sample size, and the alpha level. Indeed, given the
moderate-to-low power of many psychological experiments, the actual probability of obtaining a significant
result typically is much lower than a näıve guess based on the p value. Finally, there is a tendency to
interpret statistical tests (incorrectly) in a binary fashion: a significant test is interpreted as showing that
an e↵ect is real, whereas a non-significant test indicates the e↵ect is literally zero. These and other issues
have been discussed by many statisticians and scientists in what is now a large literature on the use and
abuse of p values, as well as the limitations of the null hypothesis testing procedure that I have described in
these notes (e.g., Altman and Bland, 1995; Cohen, 1994; Dixon, 2003; Gelman, 2013; Krantz, 1999; Loftus,
1996; Lykken, 1968).

It also is important that you realize that the p-values are correct only if the assumptions underlying the
statistical tests are true. A t test, for example, assumes that the scores are drawn independently from a
normal population. If these assumptions are correct, then the p values obtained with a t test will be correct.
If the distribution deviates from a normal distribution, or if the scores are not independent, then the p values
may be very misleading. Other statistical procedures — the analysis of variance, for example — make more
assumptions about the data. Again, the p values are exactly correct only if all of the assumptions are true.
If one or more assumptions are false, then the p values are, at best, only approximately correct. In general,
it is unlikely that all of the assumptions of a statistical test are strictly true, and so it is unlikely that the p

are exactly correct. It makes you wonder if p values of 0.04, 0.05 and 0.06 di↵er in any meaningful way. . .
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Lykken DT, Psychol Bulletin, 1968

“Statistical significance is perhaps the least important attribute of a good 
experiment; it is never a sufficient condition for claiming that a theory has been 
usefully corroborated, that a meaningful empirical fact has been established, or 
that an experimental report ought to be published.”
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Lykken DT, Psychol Bulletin, 1968

“Statistical significance is perhaps the least important attribute of a good 
experiment; it is never a sufficient condition for claiming that a theory has been 
usefully corroborated, that a meaningful empirical fact has been established, or 
that an experimental report ought to be published.”
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•Some important attributes are

- Having a clear, logical framework for formulating the research question and deriving predictions

- Using a good experimental design

- Appropriate/interesting manipulations of relevant independent variables

- Having a “good” sample of participants

- Using sensitive and reliable dependent measures

- and so on…

fin


