

Null Hypothesis Significance Testing

- Create null (H0) & alternative (H1) hypotheses
- mutually exclusive & exhaustive
- Determine if data are unusual assuming HO is true
- If data are sufficiently unusual, then we reject H0
- If data are not sufficiently unusual, we do not reject H0
- typically do not "accept H0"
- → the absence of evidence is not evidence of absence
- How do we determine if our data are "sufficiently unusual"?

Null Hypothesis Significance Testing (for means)

- How different is observation from expected value when H0 is true?
- Express difference as a standardized distance

$$z = \frac{\bar{Y} - \mu}{\sigma_{\bar{Y}}} = \frac{\bar{Y} - \mu}{\sigma/\sqrt{n}} \qquad t = \frac{\bar{Y} - \mu}{\hat{\sigma}_{\bar{Y}}} = \frac{\bar{Y} - \mu}{s/\sqrt{n}}$$

- <u>Assuming the means are distributed normally</u>
- z : distributed as standard normal variable
- t : distributed as t statistic with appropriate degrees-of-freedom
- Calculate probability of getting our z or t (or one more extreme)
- reject H0 if p value is below our "significance level" (i.e., alpha)

z & t tests for means

- tests assume that sample means are distributed normally
- if scores are distributed normally, then means are, too
- suppose scores are NOT distributed normally?
- CENTRAL LIMIT THEOREM:
- <u>irrespective</u> of how the <u>scores</u> are distributed, the sample <u>means</u> will be distributed normally, provided that the sample size (n) is sufficiently large

Central Limit Theorem (Example)

0.2

2

0

$N(\mu = 3.5, \sigma^2 = 5.1/10 = 0.51)$

Comparing 2 independent means

- Given two independent sample means, $ar{Y}_a$ & $ar{Y}_b$
- Question: are they "significantly different"?
- Define H0 & H1
- H0: true population difference is zero, $\mu_a \mu_b = 0$
- H1: true population difference is not zero, $\mu_a \mu_b \neq 0$
- Is the observed difference, $\bar{Y}_a \bar{Y}_b = 0$, unusual when H0 is true?
- Need to know the distribution of $\bar{Y}_d = \bar{Y}_a \bar{Y}_b$ when H0 is true

Comparing two independent means

- Given 2 populations of scores: means ($\mu_a \& \mu_b$) variances: ($\sigma_a^2 \& \sigma_b^2$)
- Distributions of sample means:
- $N(\mu_a, \sigma_a^2/n)$, $N(\mu_b, \sigma_b^2/n)$ (via Central Limit Theorem)
- Distribution of difference $\bar{Y}_d = (\bar{Y}_a \bar{Y}_b)$:
- mean: $\mu_d = \mu_a \mu_b$ - variance: $\frac{\sigma_a^2}{n} + \frac{\sigma_b^2}{n} - 2 \times \text{COV}(\text{A}, \text{B})$ [COV == covariance] - COV(A,B) is zero if A & B are independent, so $\sigma_d^2 = \sigma_{\bar{X}}^2 + \sigma_{\bar{X}}^2$
- $N(\mu_d, \ \sigma_d^2)$ shape is normal (via Central Limit Theorem)

Comparing 2 independent means • observed $\bar{Y}_d = (\bar{Y}_a - \bar{Y}_b)$ is a random sample from $N(\mu_d, \sigma_d^2)$ • is \bar{Y}_d unusual assuming H0 is true? • express \bar{Y}_d as standardized distance from expected value • $t = \frac{\bar{Y}_d - \mu_d}{\hat{\sigma}_d}$ follows t distribution with df = n₁ + n₂ - 2 • df calculation assumes equal variance in two groups $s_a^2 = s_b^2$ • when $s_a^2 \neq s_b^2$, t statistic follows t distribution with df < (n₁ + n₂ - 2) • calculate probability of getting our t (or more extreme) when H0 is true • reject H0 if p < alpha

<pre>> alpha <05 > t.test(x=blocked,y=mixed, +</pre>	Spot Detection Reaction Tir 1-tailed test, var.equal = FALSE	nes	
mean of x mean of y 357 397	<pre>> alpha <05 > t.test(x=blocked,y=mixed, +</pre>	• H0: $\mu_d \ge 0$, H1: $\mu_d < 0$ • alpha = 0.05 • reject H0	What affects our decision about H0?

Possible Outcomes of Hypothesis Testing

Table 1: Possible outcomes of hypothesis testing.

decision	H0 is True	H0 is False			
reject H0:	Type I $(p = \alpha)$	Correct $(p = 1 - \beta = \text{power})$			
do not reject H0:	Correct $(p = 1 - \alpha)$	Type II error $(p = \beta)$			
Type I Error: reject H0 when it is true (alpha)					
Type II Error: fail to reject H0 when it is false (beta)					
Power = Probability of rejecting false H0 (1-beta)					
		o i i i (i i i (i i i (i i i (i i i (i i i (i i i (i i i (i i i (i i i (i i i (i i (i i ((i (((((() (((() ((() ((() (() (() (() (() () (() () (() () () () ()(

What factors determine the Type I error rate?

Table 1: Possible outcomes of hypothesis testing.

What factors determine the Power & Type II error rate?

Table 1:	Possible	outcomes	of	hypothesis	testing.
----------	----------	----------	----	------------	----------

decision H0 is True H0 is False						
reject H0:	Type I $(p = \alpha)$	Correct $(p = 1 - \beta = power)$				
do not reject H0: Correct $(p = 1 - \alpha)$ Type II error $(p = \beta)$						
What determines the Type II error rate?						
Wh	at factors influence sta	tistical nower?				

alpha & power

- using alpha of .001 instead of .05 reduces Type I error
- but also increases Type II error...
- makes it harder to reject false H0
- and therefore reduces power

Simple Reaction Times

- does visual processing speed differ across wavelength?
- measure simple reaction time for 2 wavelengths
- n=10; calculated RT difference for each S
- RT w1: $\bar{Y}_1 = 357, s_1 = 83$

- RT w2:
$$\bar{Y}_2 = 367$$
, $s_2 = 83$

-
$$\Delta$$
 RT: $\bar{Y}_d = 10$, $s_d = 64.29$

- Assuming $\mu_d = 0$, is our observed $\bar{Y}_d = 10$ unusual?
- Use null hypothesis significance testing:

- H0:
$$\mu_d = 0$$
, H1: $\mu_d \neq 0$

Simple Reaction	Tin	nes				
				d	ifference score	es
	>	rt.d	F1			\ \
		sID	w1	w2	dRT	
	1	s1	291	304	12.450	
	2	s2	411	365	-46.205	
	3	s3	414	396	-17.631	
	4	s4	354	355	0.874	
	5	s5	242	393	150.332	
	6	s6	282	322	39.258	
	7	s7	288	250	-37.723	
	8	s8	450	531	81.118	
	9	s9	341	295	-46.437	
	10	s10	496	460	-36.036	
						/

Simple Reaction Times

difference scores

One Sample t-test t = 0.5, df = 9, p-value = 0.6 H1: true mean $\neq 0$ 95% CI: -36 56 sample estimates: mean of x 10

paired samples

mean difference

> t.test(rt.df1\$w2,rt.df1\$w1,mu=0, + paired=T, + alternative="two.sided")
Paired t-test
t = 0.5, df = 9, p-value = 0.6
H1: true mean difference ≠ 0
95% CI:
-36 56
sample estimates:

10

Simple Reaction Times (n=100)

- repeat experiment with larger sample
- <u>n=100</u>; calculated RT difference for each S
- RT w1: $\bar{Y}_1 = 357, s_1 = 83$
- RT w2: $\bar{Y}_2 = 367, s_2 = 83$ - Δ RT: $\bar{Y}_d = 10, s_d = 64.29$

same values as before

- Assuming $\mu_d = 0$, is our observed \bar{Y} unusual?
- Use null hypothesis significance testing:
- $\label{eq:holescaled} \texttt{-H0:} \ \mu_d = 0, \quad \texttt{H1:} \ \mu_d \neq 0$

Sample Size & St Power = p(correctly rejecting a	a false H0) = 1 - (Type II Error Rate	2)		
<pre>> power.t.test(n=10, + delta=10, + sd=64.29, + type="one.sample", + alternative="two.sided", + power=NULL) 1-sample power calculation n = 10 delta = 10 sd = 64.29152 sig.level = 0.05 power = 0.06450793 alternative = two.sided</pre>	<pre>> powert.test(n=100, + delta=10, + sd=64.29, + type="one.sample", + alternative="two.sided", + power=NULL) 1-sample power calculation n = 100 delta = 10 sd = 64.29152 sig.level = 0.05 power = 0.337378 alternative = two.sided</pre>	<pre>> power.t.test(n=1000, + delta=10, + sd=64.29, + type="one.sample", + alternative="two.sided", + power=NULL) 1-sample power calculation n = 1000 delta = 10 sd = 64.29152 sig.level = 0.05 power = 0.9984314 alternative = two.sided</pre>	effect size	

Effect Size & Statistical Power Easier to reject false H0 $\mu_d = 0$ when true $\mu_d \gg 0$							
> power.t.test(n=20,	> power.t.test(n=20,	> power.t.test(n=sampleSize,					
+ delta=20,	+ delta=40,	+ delta=80,					
+ sd=100,	+ sd=100,	+ sd=100,					
+ type="one.sample",	+ type="one.sample",	+ type="one.sample",					
+ alternative="two.sided", + alternative="two.sided",		+ alternative="two.sided",					
+ power=NULL) + power=NULL)		+ power=NULL)					
1-sample power calculation n = 20 delta = 20 sd = 100 sig.level = 0.05 power = 0.133	1-sample power calculation n = 20 delta = 40 sd = 100 sig.level = 0.05 power = 0.397	1-sample power calculation n = 20 delta = 80 sd = 100 sig.level = 0.05 power = 0.924					
alternative = two.sided	alternative = two.sided	alternative = two.sided					

Effect Size

Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Lakens D. Front Psychol. 2013 Nov 26;4:863. doi: 10.3389/fpsyg.2013.00863.

- 2 types of effect size measures:
- d: standardized differences (distances) between means
- r²: measures of association
- % variance accounted for by grouping variable
- there are MANY varieties of "d" and "r" measures:
- we will consider just 1 variety of d here...
- (we will consider more as we go through the term)
- ideally, measures should be invariant to sample size

factors affecting decision outcome

- Type I error: (alpha, significance level, critical p value)
- Power & Type II error:
- alpha (Type I error)
- general vs. focused statistical tests
- 2-tailed vs 1-tailed t tests
- sample size
- effect size

equivalence tests

interpreting non-significant t tests

Interpreting non-significant t tests

- An experiment compares drugs A & B
- Experimenter wants to know if 2 drugs yield same outcome
 - $\textbf{H0:} \ \mu_A \mu_B = 0 \quad \textbf{H1:} \ \mu_A \mu_B \neq 0$
- Conduct a significance test that is not significant (i.e., p>0.05)
- Can we conclude that the two drugs are the same?

Interpreting Non-significant 2-sided Tests

- Can we conclude that the two drugs are the same?
- No. Why not?
- Failure to attain p<0.05 may be due to low power...
- small sample size and/or noisy outcome measure
- absence of evidence is not evidence of absence
- Only conclude we "do not reject H0"
- Can we make a stronger statement?
- e.g., The two drugs have "equivalent" outcomes

H₀

Two-sided Confidence Interval Method

Using 1 - (2 x alpha) two-sided CI

Equivalence Testing using 2-sided Cl

- Equivalence test using alpha = 0.05
- H0: means are not equivalent
- H1: means are equivalent
- Evaluate H0 using 2-sided t test
- inspect 1 (2 x 0.05) = 90% Confidence Interval
- reject H0 (p < .05) if CI falls within equivalence zone

What does a s	ignificant p-valu	ie mean?
 A significant p-va <u>assuming H0 is</u> That is <u>ALL</u> that it 	lue indicates that the <u>true</u> (and assumptic means	e result is unusual ons are correct)
decision	H0 is True	H0 is False
reject H0:	(Type I $(p = \alpha)$)	Correct $(p = 1 - \beta = \text{power})$
do not reject H0:	Correct $(p = 1 - \alpha)$	Type II error $(p = \beta)$
		69

What does a significant p-value mean?

- A significant p-value indicates that the result is unusual
- assuming H0 is true (and assumptions are correct)
- That is <u>ALL</u> that it means
- (1-p) is not equal to the probability of replicating result...

70

often, p(replication) << (1-p)

What does a significant p-value mean?

- A significant p-value indicates that the result is unusual
- assuming H0 is true and assumptions are correct
- That is <u>ALL</u> it means
- (1-p) is not equal to the probability of replicating result
- p is not equal to the probability that H0 is TRUE...
- $\, {\bf \cdot}\,$ p is not equal to the probability that the result is due to chance

alpha ≠ p(H0 is TRUE)				
Table 1: Possible outcomes of hypothesis testing.				
decisionH0 is TrueH0 is Falsereject H0:Type I $(p = \alpha)$ Correct $(p = 1 - \beta = p)$ do not reject H0:Correct $(p = 1 - \alpha)$ Type II error $(p = 1 - \alpha)$	$\overline{(\beta)}$			
alpha = probability of making Type I error <u>given</u> that H0 is True alpha ≠ probability that H0 is True				

- A significant p-value indicates that the result is unusual
- assuming H0 is true and assumptions are correct
- That is <u>ALL</u> it means
- (1-p) is not equal to the probability of replicating result
- p is not equal to the probability that H0 is TRUE...
- p is not equal to the probability that the result is due to chance
- p is not equal to the probability of making a false discovery...

What does a significant p-value mean?

- A significant p-value indicates that the result is unusual
- assuming null hypothesis is true and assumptions are correct
- That is <u>ALL</u> it means
- (1-p) is not equal to the probability of replicating the result
- p is not equal to the probability that H0 is TRUE...
- p is not equal to the probability that the result is due to chance
- p is not equal to the probability of making a false discovery
- p is not a measure of the strength of evidence in favour of H0
 when H0 is true, all p values are EQUALLY likely (!)

75

What do p-values mean?

 $P(\text{data}|H0) \neq P(H0|\text{data})$

- A p value is the probability of obtaining a result that is at least as extreme as observed result when H0 is true
- it measures compatibility of our data with a specified model
- p values are statements about the data, not the hypotheses
- Used properly, p values <u>control</u> Type I error [N.B. this is good!]
- When H0 is TRUE, in the long run Type I error rate equals alpha
- But alpha does not equal the False Discovery Rate
- FDR depends on alpha, statistical power, and p(H0 is True)

Lykken DT, Psychol Bulletin, 1968

"Statistical significance is perhaps the least important attribute of a good experiment; it is never a sufficient condition for claiming that a theory has been usefully corroborated, that a meaningful empirical fact has been established, or that an experimental report ought to be published."

77

Lykken DT, Psychol Bulletin, 1968

"Statistical significance is perhaps the <u>least important attribute</u> of a good experiment; it is never a sufficient condition for claiming that a theory has been usefully corroborated, that a meaningful empirical fact has been established, or that an experimental report ought to be published."

•Some important attributes are

- Having a clear, logical framework for formulating the research question and deriving predictions - Using a good experimental design

78

- Appropriate/interesting manipulations of relevant independent variables
- Having a "good" sample of participants
- Using sensitive and reliable dependent measures
- and so on...

fin