PSYCH 710

Review of Statistical Inference

part 2

Null Hypothesis Significance Testing

Null Hypothesis Significance Testing

« Create null (HO) & alternative (H1) hypotheses
- mutually exclusive & exhaustive
« Determine if data are unusual assuming HO is true

« If data are sufficiently unusual, then we reject HO
« If data are not sufficiently unusual, we do not reject HO
- typically do not “accept HO”
» the absence of evidence is not evidence of absence

« How do we determine if our data are “sufficiently unusual”?

Null Hypothesis Significance Testing (for means)

« How different is observation from expected value when HO is true?

« Express difference as a standardized distance
Y—pu Y—u Y—pu Y-u
Z — — — —

- ov ehn 6y sh/n

« Assuming the means are distributed normally

t

-z : distributed as standard normal variable
-t : distributed as t statistic with appropriate degrees-of-freedom

« Calculate probability of getting our z or t (or one more extreme)
- reject HO if p value is below our “significance level” (i.e., alpha)




General Strategy

reject HO if z falls outside critical values of z

critical z values define middle 95%
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General Strategy

reject HO if t falls outside critical values of t

critical t values define middle 95%

2-tailed test L 1-tailed test

density
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critical t value defines upper 95%
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Possible Outcomes of Hypothesis Testing

Table 1: Possible outcomes of hypothesis testing.

decision

HO is True

HO is False

reject HO:

Type I (p = a)

Correct (p =1 — § =power)

do not reject HO:

Correct (p=1-«)

Type II error (p = 3)

Type | Error: reject HO when it is true (alpha)
Type |l Error: fail to reject HO when it is false (beta)
Power = Probability of rejecting false HO (1-beta)

assumption of normal distribution

Central Limit Theorem




z & t tests for means

« tests assume that sample means are distributed normally
« if scores are distributed normally, then means are, too

« suppose scores are NOT distributed normally?

* CENTRAL LIMIT THEOREM:

- irrespective of how the scores are distributed, the
sample means will be distributed normally, provided
that the sample size (n) is sufficiently large

probability

Central Limit Theorem (Example)

# video at https://www.simplypsychology.org/central-limit-theorem.html

pop.values <- ¢(1,1,3,4,6,6); # population
set.seed(7321083)

n <- 10 # sample size

B <- 2000 # number of iterations

05

u=3.5, 62=5.1

4

0.
I

0.3

0.2

samp.mean <- rep(@,B)

forCkk in 1:B){
# randomly sample population of scores:
cur.sample <- sample(pop.values,size=n,replace=T)
# calculate and store mean:

outcome

non-normal probability
distribution of scores

samp .mean[kk] <- mean(cur.sample)

}

Central Limit Theorem (Example)

quartz()

# plot histogram

require(MASS) # load MASS package
truehist(samp.mean,xlab=“Mean”,

+ ylab="Probability",x1lim=c(@,7))
mtext(text=bquote("Sample Size"~n==.(n)))
# draw predicted normal distribution:

sample size = 10

Probability
00 01 02 03 04 05 06

Mean mu <- mean(pop.values) # mean
near-normal probability sigma <- sd(pop.values)/sqrt(n) # SEM
distribution of means
xvals <- seq(0,8,.1)
yvals <- dnorm(xvals,mu,sigma) # normal density
lines(xvals,yvals,type="1") # draw in plot window

Central Limit Theorem (Example)
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outcome
non-normal probability
distribution of scores

Mean
near-normal probability
distribution of means (n=10)

N(u = 3.5, 6> =5.1/10 = 0.51)




2 independent samples

Comparing 2 independent means

« Given two independent sample means, ¥, & ¥,

- Question: are they “significantly different”?
« Define HO & H1

- HO: true population difference is zero, p, — p, = 0
- H1: true population difference is not zero, y, — p;, # 0
« Is the observed difference, Ya — ?b = 0, unusual when HO is true?

« Need to know the distribution of ¥, = ¥, — ¥, when HO is true

Comparing two independent means
« Given 2 populations of scores: means ([a & W) variances: ( 03 & 0',3)
« Distributions of sample means:

- Ny, ag/n), Ny, agln) (via Central Limit Theorem)

« Distribution of difference ¥, = (¥, — ¥,):

- mean: yy = i, —

2 2
c o
_ variance: — + 2 _2x COV(A, B) [COV == covariance]
n n

2

COV(A,B) is zero if A & B are independent, so ¢ = 6%/ + 62

¥,

- N(uy 63) shape is normal (via Central Limit Theorem)

Comparing 2 independent means

. observed ¥, = (¥, — ¥,,) is a random sample from N(u,, 03)
« is ¥, unusual assuming HO is true?
« express }_’d as standardized distance from expected value
Y=y e .
t= 8—d follows t distribution with df =n1 +nz -2

_ df calculation assumes equal variance in two groups sg = sb2

- when sg * sbz, t statistic follows t distribution with df < (n1 + nz - 2)

« calculate probability of getting our t (or more extreme) when HO is true

- reject HO if p < alpha




Effect of Spatial Uncertainty on Reaction Times

« measured simple reaction time for a spot of light
« stimulus presented at 1 of 4 locations
« each Ss detected spot in all 4 locations and RT was averaged across locations
« locations were either blocked or randomly intermixed
« 2 groups: Blocked vs Mixed was a between-subjects variable
- RT blocked: ¥, = 357, s, = 83
- RT mixed: ¥, = 397, s, = 53
_ART: ¥, = —40,s,=22.02
« Assuming y1; = 0, is our observed ¥, = — 45 unusual?

« Use null hypothesis significance testing:
-HO:p; =0, Hl:ip,;#0, t=-40/22.02=-1.82

Spot Detection Reaction Times
2-tailed test, var.equal = FALSE
> dlpha <- .05

> t.test(x=blocked,y=mixed,
paired=FALSE,

alternative="two.sided",
conf.level=1-alpha)

+ + + +

Welch Two Sample t-test
t = -1.8165, , p-value = 0.079
H1: true difference = @
95% CI:
-84.84 4.84
sample estimates:
mean of x mean of y
357 397

Noticedf zn;1+ny-2

Spot Detection Reaction Times
2-tailed test, var.equal = TRUE

> alpha <- .05
> t.test(x=blocked,y=mixed,

+ paired=FALSE,

+

+ alternative="two.sided",
+ conf.level=1-alpha)

Two Sample t-test
t = -1.8165, p-value = 0.077
H1: true difference = 0@
95% CI:
-84.58 4.58
sample estimates:
mean of x mean of y
357 397

Noticedf=ni1+nz-2

Spot Detection Reaction Times

« We do not reject HO t; = 0

« However, we believe spatial uncertainty increases RT
- RTbiocked < RTmixed

«So a 1-tailed test is appropriate
-HO:p; >0, Hl:p,; <0

«Reject HO if (¥ 100 = Yinixeq) i Unusually negative




Spot Detection Reaction Times
1-tailed test, var.equal = FALSE
> alpha <- .05

> t.test(x=blocked,y=mixed,
paired=FALSE,

+ + +

conf.level=1-alpha)

Welch Two Sample t-test
t =-1.82, df = 32.3, p-value = 0.039
H1: true difference < @
95% CI:

-Inf -2.7@96
sample estimates:
mean of x mean of y

357 397

o HoﬂdZO, Hl/ld<0
¢ alpha =0.05
e reject HO

What affects our decision about HO?

Possible Outcomes of Hypothesis Testing

Table 1: Possible outcomes of hypothesis testing.

decision HO is True

HO is False

reject HO: Type I (p = a)

Correct (p = 1 — 8 =power)

do not reject HO: | Correct (p=1— «)

Type | Error: reject HO when it is

Type II error (p = f3)

true (alpha)

Type |l Error: fail to reject HO when it is false (beta)
Power = Probability of rejecting false HO (1-beta)

What factors determine the Type | error rate?

Table 1: Possible outcomes of hypothesis testing.

decision

HO is True

HO is False

reject HO:

TypeI (p = «)

Correct (p =1 — 8 =power)

do not reject HO:

Correct (p=1— a)

- @@

Type II error (p = )




Type | error rate is determined by alpha

density

0.1

0.0

df = 19, alpha = 0.05

df = 19, alpha = 0.01

t distribution (df=19)

< |
S yay
/ / (\
Ay [
/ \ \
\ o \
\ |
/ \ > \
/ \ = \
[ \ -y \
[ \ N o \
/ \ cC o \
/ \ o \
iy \ © ‘ \
Y \ / \
\ / \
\ /
/
y
g i \\
H _ Eh —
: | . :
2 0 2 4 4 2 0 2

What factors determine the Power & Type Il error rate?

Table 1: Possible outcomes of hypothesis testing.

decision

HO is True

HO is False

reject HO:

Type I (p =)

Correct (p = 1 — 8 =power)

do not reject HO:

Correct (p=1—a)

Type II error (p = f3)

What determines the Type Il error rate?
What factors influence statistical power?

Power is influenced by alpha
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When HO is false, red is “correct rejection” and green is Type Il error
Lower alpha makes is harder to reject a false HO.

alpha & power

« using alpha of .001 instead of .05 reduces Type | error

« but also increases Type Il error...

- makes it harder to reject false HO

- and therefore reduces power




Power is greater for 1-tailed tests

‘HOZ/JI—MQ.:O Hl:,ul—ﬂz#o‘

df = 19, alpha = 0.05

‘HO:”I—/AZZO H1: gy — pty < O

df = 19, alpha = 0.05

density

¢ ° sample size
= i =
2 o 2 o
S i 3

Q — / i — = ,//"/ b —

-4 -2 % 2 4 4 2 % 2 4
Easier to reject false HO using focused, 1-tailed test
. S . . .
effect of sample size on power 6y = —L Simple Reaction Times

« increasing sample size decreases standard error of mean
« consequently, it becomes easier to reject a false HO (i.e., increased power)
Sampling Distribution of Mean (n=10)

Sampling Distribution of Mean (n=100) Sampling Distribution of Mean (n=1000)
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When HO u; = O is false, ¥, # 0 becomes more unusual as n increases

« does visual processing speed differ across wavelength?
» measure simple reaction time for 2 wavelengths
» n=10; calculated RT difference for each S

-RTwl: ¥, =357,5, =83
-RTw2: ¥, =367, s, = 83
-ART: ¥, =10,5,=64.29
« Assuming u, = 0, is our observed ¥, = 10 unusual?

«» Use null hypothesis significance testing:
-HO:p; =0, Hl:p;#0




Simple Reaction Times

data frame organization

difference scores
> rt.dfl

'S
sID wl w2 dRT
sl 291 304 | 12.450
s2 411 365 |-46.205
s3 414 396 |-17.631
s4 354 355 | 0.874
s5 242 393 |150.332
s6 282 322 | 39.258
s7 288 250 |-37.723
s8 450 531 | 81.118
s9 341 295 |-46.437

0 s10 496 460 (-36.036

P Ooo~NOUTL A WN PR

Simple Reaction Times

difference scores

> t.test(rt.df1$dRT,mu=0,
alternative="two.sided")

One Sample t-test
t =0.5, df = 9, p-value = 0.6
H1: true mean = 0
95% (CI:

-36 56
sample estimates:
mean of x

10

paired samples

> t.test(rt.df1%w2,rt.df1$wl,mu=0,
+ paired=T,
+ alternative="two.sided")

Paired t-test
t =0.5, df = 9, p-value = 0.6
H1: true mean difference = 0
95% CI:
-36 56
sample estimates:
mean difference
10

Simple Reaction Times (n=100)

« repeat experiment with larger sample
« n=100; calculated RT difference for each S

-RTw2: Y, =367,s, =83 same values as before

<&

<

-ART: ¥, =10, s, =64.29

« Assuming u, = 0, is our observed ¥ unusual?
« Use null hypothesis significance testing:
_Ho:ﬂd:(), Hlﬂdqéo

Simple Reaction Times

difference scores

n =100

> t.test(rt.df1$dRT,mu=0,
+ alternative="two.sided")

One Sample t-test
t = 1.5554, df = 99, p-value = 0.123
H1: true mean = 0
95% CI:
-2.756833 22.756833
sample estimates:
mean of X
10

n=10

> t.test(rt.df1$dRT,mu=0,
alternative="two.sided")

One Sample t-test

t =0.5, df =9, p-value = 0.6
H1: true mean = 0
95% CI:

-36 56

sample estimates:
mean of X

10




Simple Reaction Times (n=1000)

« repeat experiment with very large sample
«n=1000; calculated RT difference for each S

-RTwl: ¥, =357,s, = 83
-RTw2: Y, =367,s,=283

<&

same values as before

<

- ART: Yd = 10, Sll = 6429
« Assuming u, = 0, is our observed ¥ unusual?

« Use null hypothesis significance testing:

Simple Reaction Times

difference scores & paired samples

n = 1000
> t.test(rt.df3$dRT,mu=0,
+ alternative="two.sided")

One Sample t-test
t = 4.9187, df = 999, p-value < 0.001
H1: true mean = 0
95% CI:
6.01041 13.98959
sample estimates:
mean of x
10

n=10

> t.test(rt.df1$dRT,mu=0,
alternative="two

One Sample t-test
t =0.5, df = 9, p-value
H1: true mean = 0
95% CI:

-36 56

sample estimates:
mean of X

10

.sided™)

= 0.6

we now reject HO... increasing sample size increased our power

Sample Size & Statistical Power

Power = p(correctly rejecting a false HO) = 1 - (Type Il Error Rate)

> power.t.test(n=10, > power.t.test(n=100,

+ delta=10, + delta=10,

+ sd=64.29, + sd=64.29,

+ type="one.sample", + type="one.sample",

+ alternative="two.sided",| |+ alternative="two.sided",
+ power=NULL) + power=NULL)

1-sample power calculation 1-sample power calculation

n=10 n =100

delta =10 delta =10

sd =64.29152 sd = 64.29152
sig.level = 0.05 sig.level = 0.05

power = 0.06450793
alternative = two.sided

power =0.337378
alternative = two.sided

> power.t.test(n=1000,

+ delta=10,

+ sd=64.29,

+ type="one.sample",

+ alternative="two.sided",
+ power=NULL)

1-sample power calculation
n = 1000

delta =10

sd =64.29152

sig.level = 0.05

power = 0.9984314
alternative = two.sided

effect size




Influence of effect size on statistical power

« big effects are easier to detect than small effects
« two-sample case:

- HO: py — py =0, HL:pty —pip # 0

- easier to reject HO when (y; — p, < 0) or (4 — p, > 0)
« one-sample case:

-HO:p; =0, Hl: p; #0

- easier to reject HO when (1; < 0) or (u; > 0)

Effect Size & Statistical Power

Easier to reject false HO y; = O when true u,; > 0

> power.t.test(n=20,

+
+ type="one.sample",

+ alternative="two.sided",
+ power=NULL)

1-sample power calculation
n=20

delta =20

sd =100

sig.level = 0.05

power =0.133

alternative = two.sided

> power.t.test(n=20,

+
+

+ type="one.sample",

+ alternative="two.sided",
+ power=NULL)

1-sample power calculation
n=20

delta = 40

sd =100

sig.level = 0.05

power = 0.397

alternative = two.sided

> power.t.test(n=sampleSize,
+

+ type="one.sample",
+ alternative="two.sided",
+ power=NULL)

1-sample power calculation
n=20

delta = 80

sd =100

sig.level = 0.05

power = 0.924

alternative = two.sided

Effect Size

Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs.
Lakens D. Front Psychol. 2013 Nov 26;4:863. doi: 10.3389/fpsyg.2013.00863.

« 2 types of effect size measures:
- d: standardized differences (distances) between means
- r2: measures of association
» % variance accounted for by grouping variable
« there are MANY varieties of “d” and “r” measures:
- we will consider just 1 variety of d here...
- (we will consider more as we go through the term)
« ideally, measures should be invariant to sample size

Cohen’s d for RT (wavelength) study

cohens_d in effectsize library

"> cohens_d(x=rt.df1$dRT)
Cohen's d | 95% CI

0.16 | [-0.47, 0.78]

‘s cohens_d(x=rt.df2$dRT)

Cohen's d | 95% CI
0.16 | [-0.04, 0.35]
(> cohens_d(x=rt.df3$dRT)
Cohen's d | 95% CI
0.16 | [0.09, 0.22]

d= 0—4dy _ 0-Y,

04 Sd

n=10 Distribution of Difference Scores
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_ // \\\ .

n = 1000 0 g



https://pubmed.ncbi.nlm.nih.gov/24324449/

factors affecting decision outcome
« Type | error: (alpha, significance level, critical p value)

* Power & Type Il error:
- alpha (Type | error)
- general vs. focused statistical tests
» 2-tailed vs 1-tailed t tests
- sample size
- effect size

equivalence tests

interpreting non-significant t tests

Interpreting non-significant t tests

« An experiment compares drugs A & B
« Experimenter wants to know if 2 drugs yield same outcome
» HO:py —pup =0 HL:ipy —pg # 0
« Conduct a significance test that is not significant (i.e., p>0.05)
« Can we conclude that the two drugs are the same?

Interpreting Non-significant 2-sided Tests

« Can we conclude that the two drugs are the same?

* No. Why not?

« Failure to attain p<0.05 may be due to low power...
- small sample size and/or noisy outcome measure
- absence of evidence is not evidence of absence

» Only conclude we “do not reject HO”

« Can we make a stronger statement?

- e.g., The two drugs have “equivalent” outcomes




Equivalence Tests

Classic Null-Hypothesis Significance Test (Two Sided)
« Standard NHST Ho

v
- HO: (g — pg) = O3 HL:ppy —pp # 0

0

Hq Hq
X Effect Size
« Equivalence tests reverse HO & H1:

- HO: there is a difference (44 — pg) # 0

Equivalence Test

- H1: there is no difference (u4 — pi) =0 ” i ”

- try to reject HO with two 1-sided tests AIL 0 A‘U
Effect Size

Equivalence Test
e
o0
« Smallest Effect Size of Interest SESOI (AL & Ay) b e tootsie .
- AL & Ay are lower & upper bounds of equivalence region (i.e., iy X pig)
- HO: (py — pp) < A; OR (py — pg) > Ay lie., two means are not equivalent]
- H1: (uy — pup) > A; AND (py — pp) < Ay lie., two means are equivalent]
« evaluate HO with two 1-tailed t-tests:
- HOw: (pg — pp) < A HL: (uy — pp) > Ay lis difference > A, ?]
- HOu: (py — pp) > Ay Hlu: (uy — pp) < Ay lis difference < Aj?]
« if both 1-tailed tests are significant, then
- we accept H1i: (g — pg) > Ay AND Hlu: (py — pp) < Ay

- difference is within + SESOI
- e.g., two groups are “equivalent”

Equivalence Tests

Two One-Sided Test Method

TOST

TOST procedure

« Equivalence test hypotheses
- define lower bound (LB) & upper bound (UB)
_ HO: (4 < LB) OR (4, > UB)
- H1: (u; > LB) AND (1; < UB)  [equivalent]
« Evaluate HO with two 1-tailed tests
- lower bound: HO.: (; < LB) H1.: (u,; > LB)
- upper bound: HOu: (1; > UB) H1yu: (1; < UB)

[not equivalent]

« If both 1-tailed tests are significant (p < a)
- then reject HO (not equivalent) (p < a)




Equivalence Test Example
Two One-tailed Significance Tests (TOST)

> N <= 2500 HO, : <A

> mul <- 100.5 L:¥p=5L

> mu2 <- 100 > # is mean > lower bound?

> stdev <- 7

> set.seed(20912) > t.test(x,y,mu:LQWER.BOUND, )

> x <= rnorm(N,mul,stdev) + alternative=“greater™)

>y <= rnorm(N,muz, stdev) t = 8.002, df = 4997, p-value =
# Is observed difference between Hl.: true difference is > -1

95% CI: 0.2502728
sample estimates:
mean of x mean of y
100.5765 100.0026

# upper & lower bounds? Inf
UPPER.BOUND <- 1 # [ A, ]
LOWER.BOUND <- -1 # [ A, ]
# HO: (diff < -1) OR (diff > 1)
# Hl: (diff > -1) AND (diff < 1)

<

.0001

Equivalence Test Example
Two One-tailed Significance Tests (TOST)

> N <- 2500 HOy :up > Ay

> mul <- 100.5

> mu2 <- 100 > # is mean < upper bound?

> stdev <- 7

> set.seed(20912) > t.test(x,y,mu=UF’PER.BOUND,

> x <- rnorm(N,mul,stdev) + alternative=“less™)

>y <= rnorm(N,muZ, stdev) t = -2.167, df = 4997, p-value = 0.015
# Is observed difference between Hlu! true difference < 1

95% CI: -Inf 0.8974459
sample estimates:

mean of x mean of y
100.5765 100.0026

>
> # upper & lower bounds?

> UPPER.BOUND <- 1 # [ A, ]

> LOWER.BOUND <- -1 # [ A, ]

> # HO: (diff < -1) OR (diff > 1)
> # Hl: (diff > -1) AND (diff < 1)

Two-sided Confidence Interval Method

Using 1 - (2 x alpha) two-sided ClI

Equivalence Testing using 2-sided ClI

« Equivalence test using alpha = 0.05
- HO: means are not equivalent
- H1: means are equivalent
« Evaluate HO using 2-sided t test
- inspect 1 - (2 x 0.05) = 90% Confidence Interval
- reject HO (p < .05) if Cl falls within equivalence zone




Testing Lower Bound of Equivalence Region
(is difference greater than AL?)

lower limit of CI

v : v

A

e Let alpha be set for a 1-sided test (alpha = 0.05)

eProbability of interval containing true population difference = 1-0.05 = 0.95
eProbability of true difference being less than lower limit of Cl is 0.05

Testing Lower Bound of Equivalence Region
(is difference greater than AL?)

HO H1

smallest negative ~ + A
effect of interest L

o~ i lower limit of CI

eTest of Lower Bound: HO: () — pp) < Ap H1: (g — pp) > Ap

e|f Cl does not include A, then reject HO. in favor of H1,
(i.e., true difference between means is greater than Ay)

¢In this case we reject HO, (p < .05)

Testing Upper-bound of Equivalence Region

Testing Upper-bound of Equivalence Region
(is difference less than Au?)

p=(1-aq

i upper limit of CI
v
T

0

SVt e----@

eLet alpha be set for a 1-sided test (alpha = 0.05)
*Probability of interval containing true population difference = 1-0.05 = 0.95
*Probability of true difference being greater than upper limit of Cl is 0.05

(is difference less than Ay?)

H1 smallest positive HO
: effect of interest
Ay:
®
il -
H + upper limit of CI
1 ' v
t i t
0 Y,

eTest of Upper Bound: HOu: (i) — pp) = Ay Hlu: (4 — i) < Ay

¢ |f Cl does not include Ay then reject HOy in favor of H1y
(i.e., true difference between means is less than Ay)

¢In this case we do NOT reject HOy




Testing Lower & Upper bounds of Equivalence Region
(is difference in-between AL and Auy?)

p=a p=(-2a) p=a
—_—
v H v
t 1 .
0 7

eLet alpha be set for a 2-sided test (alpha = 2 x 0.05)

*Probability of Cl containing true population difference = (1 - 2 x alpha) = 0.90
(i.e., probability of true difference lying below OR above 2-sided Cl = 0.10)

Testing Lower & Upper bounds of Equivalence Region
(is difference in-between AL and Au?)
equivalence region

A PA,
HO i H1 HO
v v Vv
T T T
o 7,

¢ Equivalence Test Hypothesis:
- HO: {(py — pp) < A; OR (py — pip) > Ay} [not equivalent]
-H1: {(py — pp) > A; AND (uy — pp) < Ay} [equivalent]

Testing Lower & Upper bounds of Equivalence Region
(is difference in-between AL and Au?)
equivalence region

A Ay
HO H1 { HO
v ) H v
T T T
0 ¥y

o|f Cl falls within the equivalence region, then Yd is unusually small assuming HO is true.

- we reject HO in favor of H1 — i.e., the two means are “equivalent” — p < .05
¢In this case we do NOT reject HO (i.e., that the two means are not equivalent)
- because we cannot reject hypothesis that (u4 — up) > Ay

Testing Lower & Upper bounds of Equivalence Region
(is difference in-between AL and Au?)

equivalence region

Ay P Ay
Pp=a p=0-2a) pP=a
HO : H1 g
—
v v ¥
t + t
0 Yp

¢ Equivalence Test Hypothesis
- HO: {(py — pig) < Ap OR (py — pig) 2 Ayt HL:{(py — pp) > Ap AND (py — pig) < Ay}
o |f 90% Cl is within the equivalence region, then )_’d is unusually small assuming HO is true.

- we would reject HO in favor of H1 — i.e., the two means are “equivalent” — p <.05

¢ n this case we DO reject HO in favor of H1 [means are equivalent]




Equivalence Test Example

using two-sided 90% confidence interval

> UPPER.BOUND <- 1 [ A, ]
> LOWER.BOUND <- -1 [ 4, ]
1-sided test results

upper bound: 95% CI
lower bound: 95% CI

> dlpha <- 0.05 # equivalence test alpha
> t.test(x,y,mu=0,
+ alternative=“two.sided”,
+ conf.level=(1-2*alpha) )
= 2.9176, df = 4997, p-value = 0.003543
H1l: true difference = 0
90% CI: @.2502728 ©.8974459
sample estimates:
mean of x mean of y
100.5765 100.0026

ot

> (0.2502728 > LOWER.BOUND)

[1] TRUE
HO: (Gt = 1) < Ay O (s = i) 2 Ao > (0.8974459 < UPPER.BOUND)
H1: {(uy = ) > AL AND (g = ) < Ay} [1] TRUE

> # 90% CI falls within equivalence zone
> # reject HO in favour of H1 (p < 0.05)

Null Hypothesis vs Equivalence Tests

Four possible outcomes when evaluating difference between 2 group means

Equivalence Test

Equivalent Not Equivalent

Not Different

Null Hypothesis
Significance Test
Different

NHST vs Equivalence Tests (4 outcomes)

equivalence region

—@—:  “Statistically Equivalent & Different”

—— “Statistically Equivalent & Not Different”
+ “Not Equivalent & Different”

—E—.i;“Not Equivalent & Not Different”

< >

difference between means A 0 Ay

Lakens, D. Equivalence tests: A practical primer for t tests, correlations, and meta-
analyses. Social Psychological & Personality Science, 8(4), 355-362.

What do p values mean?
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What does a significant p-value mean?

« A significant p-value indicates that the result is unusual

- assuming HO is true (and assumptions are correct)

e That is ALL that it means

decision HO is True HO is False
reject HO: Typel (p =« Correct (p =1 — 8 =power)

do not reject HO:

Correct (p=1—«)

Type II error (p = f3)

What does a significant p-value mean?

« A significant p-value indicates that the result is unusual
- assuming HO is true (and assumptions are correct)
« That is ALL that it means
- (1-p) is not equal to the probability of replicating result...

» often, p(replication) << (1-p)

What does a significant p-value mean?

- p is not equal to the probability that HO is TRUE...

» pis not equal to the probability that the result is due to chance

alpha # p(HO is TRUE)

Table 1: Possible outcomes of hypothesis testing.

decision ‘ HO is True ‘ HO is False
reject HO: ‘ Typel (p=a) ‘ Correct (p =1 — 3 =power)
do not reject HO: ‘ Correct (p=1-—a) ‘ Type II error (p = )

alpha = probability of making Type | error given that HO is True
alpha # probability that HO is True




What does a significant p-value mean?

- p is not equal to the probability of making a false discovery...

Result of Significance
True state Test
of HO

‘ Correctly Reject

aee ¥ ( 80 ) HO
False /

Dm Type Il Error
et Ho (miss)
alpha = 0.05
beta = 0.20
1000 power = 0.80
\\ Type | Error

o as )
True W /. (false alarm)

100

Correctly Fail to

855 Reject HO

What does a significant p-value mean?

- p is not a measure of the strength of evidence in favour of HO
- when HO is true, all p values are EQUALLY likely (!)

P(data| HO) # P(HO|data)

What do p-values mean?
« A p value is the probability of obtaining a result that is at least as
extreme as observed result when HO is true
- it measures compatibility of our data with a specified model
« p values are statements about the data, not the hypotheses
» Used properly, p values control Type | error [N.B. this is good!]
- When HO is TRUE, in the long run Type | error rate equals alpha
- But alpha does not equal the False Discovery Rate
» FDR depends on alpha, statistical power, and p(HO is True)




Lykken DT, Psychol Bulletin, 1968

“Statistical significance is perhaps the least important attribute of a good
experiment; it is never a sufficient condition for claiming that a theory has been
usefully corroborated, that a meaningful empirical fact has been established, or
that an experimental report ought to be published.”

Lykken DT, Psychol Bulletin, 1968

“Statistical significance is perhaps the |east important attribute of a good
experiment; it is never a sufficient condition for claiming that a theory has been
usefully corroborated, that a meaningful empirical fact has been established, or
that an experimental report ought to be published.”

«Some important attributes are
- Having a clear, logical framework for formulating the research question and deriving predictions
- Using a good experimental design
- Appropriate/interesting manipulations of relevant independent variables
- Having a “good” sample of participants
- Using sensitive and reliable dependent measures
-and so on...
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