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Overview

• Course Information


• What is statistics?


• Ways of collecting data


• Modes of statistical analysis


• Sampling distributions & parameter estimation


• z tests & t tests

Course Management

• All lecture materials will be available on Avenue 2 Learn


- reading assignments


- lecture slides


- labs & homework assignments


• Students are expected to install and use R


- labs & exams will be in Psychology computer cluster (PC-154)


- you may use your own laptop


• Labs, homework, & exams are open-book


- you may use any/all aids to complete exams


- you may collaborate on labs and homework assignments



Avenue To Learn Avenue To Learn

R home https://www.r-project.org
CRAN

https://cran.r-project.org



Video Tutorials on Using R

www.youtube.com/playlist?list=PLqzoL9-eJTNARFXxgwbqGo56NtbJnB37A

Video Tutorials on Using R

www.youtube.com/playlist?list=PLqzoL9-eJTNARFXxgwbqGo56NtbJnB37A

Review of Statistical Inference What is statistics?

12

https://www.youtube.com/playlist?list=PLqzoL9-eJTNARFXxgwbqGo56NtbJnB37A
https://www.youtube.com/playlist?list=PLqzoL9-eJTNARFXxgwbqGo56NtbJnB37A


Role of statistics in research

• Statistical methods help us to collect, organize, summarize, analyze, 
interpret, & present data

Role of statistics in research (PPDAC)

David Spiegelhalter
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Role of statistics in research

• Statistical methods help us to collect, organize, summarize, analyze, 
interpret, & present data


• “The role of statistics is not to discover truth. The role of statistics is to 
resolve disagreements between people.” - Milton Friedman

Role of statistics in research

“...the purpose of statistics is to 
organize a useful argument from 
quantitative evidence, using a form 
of principled rhetoric*.” - Robert P. 
Abelson


*rhetoric: the art of effective/persuasive speaking or writing
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Ways of collecting data

Ways of Collecting Data

• Designed Experiments -


- effects of independent variables on dependent variables


- random assignment of “subjects” to conditions


• Correlational Studies -


- associations among predictor & criterion variables


- “subjects” come with their own set of variables


• Both types can be combined into a single study/analysis (e.g., ANCOVA)
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Correlational Studies

• Measure the association between predictor & criterion variables


• Predictor variables are not manipulated by investigator


- each event/subject comes with own set of variables


- but values on variables differ across events/subjects


• Difficult to establish causal relation between variables
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Designed Experiments

• Measure causal effects of independent variables on dependent variables


• Independent variables usually manipulated by experimenter


- not always (e.g., “age” in developmental studies)


• Whenever possible, participants should be assigned randomly to conditions
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Random Assignment
• In Psychology, designed experiments use subjects that also come with 

their own set of intrinsic characteristics


• These characteristics (personality, motivation, intelligence, etc.) probably 
affect dependent variable


• HOWEVER, subjects in most designed experiments are randomly 
assigned to experimental conditions


• So, effects of subject differences should be UNRELATED TO EFFECTS OF 
INDEPENDENT VARIABLES


- big advantage of designed experiments over correlational studies 
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Modes of Statistical Analysis

Descriptive vs. Inferential 

Exploratory vs. Confirmatory 
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Descriptive vs.Inferential Statistics

• Descriptive statistics:


- describes important characteristics of the sample


- uses graphs & statistics e.g., mean or standard deviation


• Inferential statistics:


- uses sample to make claims about a population


- e.g., estimate population parameters from sample statistics


- e.g., investigate differences among population by examining differences among 
samples [effect size & association strength]
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Exploratory vs Confirmatory Analyses

• Exploratory Data Analysis


- first major proponent was John Tukey


- goal: discover & summarize interesting aspects of data


- discover interesting hypotheses to test


• Confirmatory Data Analysis


- data are gathered & analyzed to evaluate specific a priori hypotheses


- example: clinical drug trials


• Important not to confuse two types of analyses


- replication crisis in Psychology related to confusion about two types of research

John Tukey
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https://en.wikipedia.org/wiki/John_Tukey


Sampling Distributions & Point Estimators
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Descriptive & Inferential Statistics

sample statistics

mean, variance

Bennett, PJ PSYCH 710 Hypothesis Testing

Ȳ , s2

7

sample

population parameters

Bennett, PJ PSYCH 710 Hypothesis Testing

µ, �2

7

population

statistical theory

e.g., sampling 
distributions

(Descriptive Statistics)

(Inferential Statistics)
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Inference: Samples to Populations

• Population: all events (subjects, scores, etc)) of interest


• Sample: subset of population


- random sample: each member of population has equal chance of being selected


- convenience sample (e.g., psychology undergraduates)


• Inference depends on quality of relation between sample & population.


- e.g., Is sample representative of population?
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Sample Statistics vs. Population Parameters

• We can use sample statistics to estimate population parameters


- The sample mean, , is an unbiased estimate of population mean, μ


- The sample variance, s2, is an unbiased estimate of population variance, σ2 


‣ [N.B. True when using (n-1) in the denominator]


‣ sample standard deviation, s, is a biased estimate of population variance, σ [slightly too small]


- The sample correlation, r, is a biased estimate of the population correlation, though the bias may 
be small when n is large


• What is an “unbiased” estimate?


- If the average value of many sample statistics (e.g., ) equals the population parameter (e.g., μ), 
the statistic is an unbiased estimate of the parameter

Ȳ

Ȳ
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Sampling Distributions of Mean and SD

population mean = 100

population variance = 100


population sd = 10

distributions of statistics 
for 5000 samples (n=20)
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mean = 100 (100)

variance = 5.07 (5)

mean = 100 (100)   

variance = 1066 (1053)

mean = 9.87 

variance = 2.65

Interval Estimators & Confidence Intervals
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Confidence Interval

• 95% Confidence Interval 


- an interval estimate of the value of a population parameter (e.g., population correlation)


‣ e.g., the population correlation lies between “r-low” and “r-high”


- CI95% is calculated from data in your sample


- the interval varies across samples


‣ we wouldn’t expect it to be exactly the same for each random sample of (X,Y) values


- in the long run, the interval contains the true population value 95% of the time


• how can we calculate CI95% for our correlation, r?


- there are several methods… we first demonstrate the percentile bootstrap method


‣ N.B. the method is not as important as understanding the meaning of the CI95%
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calculating 95% confidence interval for ρ

• our sample r = 0.52


• what is CI95% for ρ?


• percentile bootstrap method:


- uses (X,Y) sample as estimate of (X,Y) population


- calculate r* on bootstrapped samples:


- randomly select 20 (X,Y) pairs from the data


- calculate r for each bootstrapped sample (r*)


- repeat MANY times


- display histogram of r*


• identify range of values containing 95% of r*


- range is PERCENTILE BOOTSTRAP estimate of CI95% for ρ
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distribution of bootstrapped r* values

• (X,Y) data is estimate of (X,Y) population


• create bootstrapped sample:


- randomly select 20 (X,Y) pairs from data


- calculate r for each bootstrapped sample (r*)


- repeat MANY times


- display histogram of r*


• identify range that contains 95% of r*


- range is PERCENTILE BOOTSTRAP estimate of 95% confidence interval for r


- CI95% = [0.17, 0.77]


- CI95%  is our interval estimate of population parameter ρ

calculate r* for many bootstrapped samples of data (n=20)

0.17
0.77
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distribution of bootstrapped r* values

• (X,Y) data is estimate of (X,Y) population


• create bootstrapped sample:


- randomly select 20 (X,Y) pairs from data


- calculate r for each bootstrapped sample (r*)


- repeat MANY times


- display histogram of r*


• identify range that contains 95% of r*


- range is PERCENTILE BOOTSTRAP estimate of 95% confidence interval for r


- CI95% = [0.17, 0.77]


- CI95%  is our interval estimate of population parameter ρ

calculate r* for many bootstrapped samples of data (n=20)

34-0.5 0.0 0.5 1.0 1.5

r

95% Confidence Intervals
ρ = 0.520 & n = 20

Confidence Interval of r
• Fisher’s z transformation of r


• transformed r’s are approximately normal
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Fisher's z transformed r
transformed r

Confidence Interval of r
• Fisher’s z transformation of r


• transformed r’s are approximately normal


• calculate 95% CI by calculating critical values that capture middle 95%
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Confidence Interval of r
1. convert r to z


2. calculate standard deviation of sampling distribution 1/sqrt(n-3)


3. calculate values of z that cutoff lower/upper 2.5% of distribution


4. calculate Confidence Interval defined by Fisher Z values


5. transform Z values to r values

37

https://shandou.medium.com/how-to-compute-confidence-interval-for-pearsons-r-a-brief-guide-951445b9cb2d#

1 ( sampZ <- 0.5 * log((1+ourSampR)/(1-ourSampR)) )
[1] 0.5763398
2 ( zSE <- 1/sqrt(n-3) )
[1] 0.243 
3 ( zCrit <- qnorm(0.975,0,1) ) # ± zCrit
[1] 1.96
4 ( zCI <- c(sampZ-zCrit*zSE, sampZ+zCrit*zSE) )
[1] 0.1009787 1.0517008
5 (rCI <- (exp(2*zCI)-1)/(exp(2*zCI)+1) )
[1] 0.1006368 0.7824667

Confidence Interval of r
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1 ( sampZ <- 0.5 * log((1+ourSampR)/(1-ourSampR)) )

[1] 0.5763398

2 ( zSE <- 1/sqrt(n-3) )

[1] 0.243 

3 ( zCrit <- qnorm(0.975,0,1) ) # ± zCrit

[1] 1.96

4 ( zCI <- c(sampZ-zCrit*zSE, sampZ+zCrit*zSE) )

[1] 0.1009787 1.0517008

5 (rCI <- (exp(2*zCI)-1)/(exp(2*zCI)+1) )

[1] 0.1006368 0.7824667

> cor.test(X,Y)


Pearson's product-moment correlation


data:  X and Y

t = 2.5828, df = 18, p-value = 0.01876

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

 0.1006368 0.7824667

sample estimates:

cor 

0.52 

z test of single observation
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z test

A woman in the US has just given birth to a full-term baby 
weighing 291 kg. Is this weight unusually low?
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Density Functions & ProbabilityBennett, PJ PSYCH 710 Hypothesis Testing

Example: Normal Distribution
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CP(x≤C) P(x≥C)

for continuous distributions, the probability of selecting a value of x that is

less than or greater than some criterion, C, equals the area beneath the curve

and to the left or right of C, respectively.

Figure 2: The probability of randomly selecting a value of x that is  C – i.e., P (x  C) – corresponds to
the area under the probability density function that is to the left of C. P (x � C) equals the area under the
curve that is to the right of C.

[1] 0.01267143 # prob of getting a score >= 105

> 0.01267143+0.01267143

[1] 0.02534286 # prob of getting a score <= 95 OR >= 105

In other words, the probability of selecting a score that is less than 95 or greater than 105 is only 0.025.
Because the total probability is 1, the probability of selecting a score that is between 95 and 105 is 1�0.025 =
0.975. Given their relatively low probability, it is reasonable to assert that scores that fall below 95 or above
105 are unusual. By this criterion, our observed mean score of 93 is unusual, and we therefore reject the
null hypothesis that µ = 100 in favor of the alternative hypothesis µ 6= 100.

In our example, we considered any score falling below 95 or above 105 to be unusual. It is important
to note, however, that getting an unusual score does not necessarily mean that the null hypothesis is false.
After all, unusual scores are possible even when the null hypothesis is true. In fact, we expect to obtain
an unusual score with a probability of .025 when the null hypothesis is true. Hence, it is possible that our
decision to reject the null hypothesis is incorrect. This type of error — rejecting the null hypothesis when
it is true — is called a Type I error. The probability of making this error is determined by the criteria we
use to define a score as unusual. In this case, we used criteria (i.e., below 95 or above 105) which would
lead to a Type I error 2.5% of the time. The probability of making a Type I error is referred to as ↵ (i.e.,
alpha), and so we would say that the Type I error rate, or ↵, is .025 for this statistical test.

It is standard practice in Psychology to set ↵ to either 0.05 or 0.01. If we set ↵ = .05, then our decision
criteria would be 95.6 and 104.4:

> qnorm(.025,mean=100,sd=2.236,lower.tail=TRUE) # qnorm... not pnorm

[1] 95.61752 # the probability of getting a score <= 95.6 is 0.025...

> pnorm(95.61752,mean=100,sd=2.236,lower.tail=TRUE)

[1] 0.02499999

> qnorm(.025,mean=100,sd=2.236,lower.tail=FALSE)

[1] 104.3825 # # the probability of getting a score >= 104.38 is 0.025...
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Example: Normal Distribution
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for continuous distributions, the probability of selecting a value of x that is

less than or greater than some criterion, C, equals the area beneath the curve

and to the left or right of C, respectively.

Figure 2: The probability of randomly selecting a value of x that is  C – i.e., P (x  C) – corresponds to
the area under the probability density function that is to the left of C. P (x � C) equals the area under the
curve that is to the right of C.

[1] 0.01267143 # prob of getting a score >= 105

> 0.01267143+0.01267143

[1] 0.02534286 # prob of getting a score <= 95 OR >= 105

In other words, the probability of selecting a score that is less than 95 or greater than 105 is only 0.025.
Because the total probability is 1, the probability of selecting a score that is between 95 and 105 is 1�0.025 =
0.975. Given their relatively low probability, it is reasonable to assert that scores that fall below 95 or above
105 are unusual. By this criterion, our observed mean score of 93 is unusual, and we therefore reject the
null hypothesis that µ = 100 in favor of the alternative hypothesis µ 6= 100.

In our example, we considered any score falling below 95 or above 105 to be unusual. It is important
to note, however, that getting an unusual score does not necessarily mean that the null hypothesis is false.
After all, unusual scores are possible even when the null hypothesis is true. In fact, we expect to obtain
an unusual score with a probability of .025 when the null hypothesis is true. Hence, it is possible that our
decision to reject the null hypothesis is incorrect. This type of error — rejecting the null hypothesis when
it is true — is called a Type I error. The probability of making this error is determined by the criteria we
use to define a score as unusual. In this case, we used criteria (i.e., below 95 or above 105) which would
lead to a Type I error 2.5% of the time. The probability of making a Type I error is referred to as ↵ (i.e.,
alpha), and so we would say that the Type I error rate, or ↵, is .025 for this statistical test.

It is standard practice in Psychology to set ↵ to either 0.05 or 0.01. If we set ↵ = .05, then our decision
criteria would be 95.6 and 104.4:

> qnorm(.025,mean=100,sd=2.236,lower.tail=TRUE) # qnorm... not pnorm

[1] 95.61752 # the probability of getting a score <= 95.6 is 0.025...

> pnorm(95.61752,mean=100,sd=2.236,lower.tail=TRUE)

[1] 0.02499999

> qnorm(.025,mean=100,sd=2.236,lower.tail=FALSE)

[1] 104.3825 # # the probability of getting a score >= 104.38 is 0.025...
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z test

• z is a standardized score: # standard deviations from mean


• used to evaluate individual scores and group mean when population 
variance is known


• when scores or means are distributed normally


- z is distributed normally with mean=0 and std dev=1


- 95% of values fall between ±1.96


- 99% of values fall between ±2.56

Bennett, PJ PSYCH 710 Hypothesis Testing

> pnorm(104.3825,mean=100,sd=2.236,lower.tail=FALSE)

[1] 0.02499946

[1] 0.02499999 + 0.02499946 # the JOINT probability of getting a score <=95.6 OR >=104.38

[1] 0.04999945

Now, any score that is less than 95.6 or greater than 104.4 leads to the rejection of the null hypothesis.
Notice that the range of acceptable scores — which do not cause us to reject the null hypothesis — is smaller
than before. In other words, we are more likely to reject the null hypothesis even when it is true. This
change in the Type I error makes sense because we increased ↵ from .025 to .05. If we set ↵ = .01, then our
decision criteria would be 94.8 and 105.2, and any score that is outside that range leads to the rejection of
the null hypothesis. Now the Type I error rate, .01, is lower than before.

0.2 standardized scores & z tests

In the previous example, I used a computer to calculate the decision criteria for ↵ = .05 and ↵ = .01. Before
computers were readily available — yes, there was such a time — people looked up the decision values in
published tables. It would be impossible to publish tables for every possible case, and therefore people used
a table of standard normal deviates or z scores. This section shows how to use such a table to conduct
a z test.

Any value, Y , can be converted to a standard score using the formula

z =
(Y � µ)

�
(5)

Notice that a z score equals the number of standard deviations that Y is from µ. When Y is drawn from a
normal distribution, then z is distributed as a Normal variable with µ = 0 and � = 1.

We can convert our observed mean score from the previous example into a z score – z = (93�100)/2.236 =
�3.13 – which implies that the observed mean is 3.13 standard deviations below the expected value of the
mean. Now we want to know if our observed z score is unusual, given the assumption that the null hypothesis
is true. If the null hypothesis is true, then z will be between ±1.96 95% of the time and between ±2.56
99% of the time. Therefore, using the criteria of ±1.96 to reject the null hypothesis will yield a Type I error
rate of 0.05, whereas the criteria of ±2.56 corresponds to a Type I error rate of 0.01. Our observed z score
falls outside of both sets of criteria, and so the null hypothesis is rejected. It used to be standard practice
to indicate which ↵ level was used by writing that the null hypothesis was rejected (p < .05) or (p < .01).
Nowadays, scientists are encouraged to publish the exact p value for their observed statistic. In our case,
the probability of drawing a z that was outside the range of ±3.13 is 0.00175, and so we would report the
statistical result by writing “the sample mean di↵ered significantly from 100 (z = �3.13, p = 0.00175) and
so the null hypothesis µ = 100 was rejected”.

0.3 t tests

In the previous example, we knew that � = 10. But in most cases we we do not know �, and therefore it
must be estimated from the data:

�̂ = s =

sP
i(Yi � Ȳ )2

(n� 1)

The estimate, s can be used to calculate t, which is similar to a z score:

t =
(Ȳ � µ)

(s/
p
n)

(6)

4
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z test

• In US, population of Caucasian (non-Hispanic) full-term infants has a 
mean weight of 3480 g and a standard deviation of 462 g


• The weights are distributed approximately normally


• A weight of 2910 g is 1.23 standard deviations below the mean:


- z = (2910 - 3480) / 462 = -1.23


• What is the probability of observing a weight that is at least this low?
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z test
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p(weight < 2910)

= pnorm(2910, mean=3480, sd=462)

= 0.109

p(z < -1.23)

= pnorm(-1.23,mean=0,sd=1)

= 0.109
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z test

• In US, population of Caucasian (non-Hispanic) full-term infants has a 
mean weight of 3480 g and a standard deviation of 462 g.


• The weights are distributed approximately normally.


• A weight of 2910 g is 1.23 standard deviations below the mean:


- z = (2910 - 3480) / 462 = -1.23


• What is the probability of observing a weight at least this low?


- p(z < -1.23) = 0.109
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z test for a group mean
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z test for means

• consider situation when we want to evaluate a group mean


- e.g.,measure birth weight of 100 Native-American full-term babies


- mean = 3350 g; standard deviation = 425 g


• is group mean of 3350 g unusually low?

z =
(Ȳ − μȲ)

σȲ
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z test for means

• population mean & variance are known


- mean = 3350 g; standard deviation = 425 g


• use z test


• convert observed mean to a z score: z =
(Ȳ − μȲ)

σȲ

48
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Example: Normal Distribution
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for continuous distributions, the probability of selecting a value of x that is

less than or greater than some criterion, C, equals the area beneath the curve

and to the left or right of C, respectively.

Figure 2: The probability of randomly selecting a value of x that is  C – i.e., P (x  C) – corresponds to
the area under the probability density function that is to the left of C. P (x � C) equals the area under the
curve that is to the right of C.

[1] 0.01267143 # prob of getting a score >= 105

> 0.01267143+0.01267143

[1] 0.02534286 # prob of getting a score <= 95 OR >= 105

In other words, the probability of selecting a score that is less than 95 or greater than 105 is only 0.025.
Because the total probability is 1, the probability of selecting a score that is between 95 and 105 is 1�0.025 =
0.975. Given their relatively low probability, it is reasonable to assert that scores that fall below 95 or above
105 are unusual. By this criterion, our observed mean score of 93 is unusual, and we therefore reject the
null hypothesis that µ = 100 in favor of the alternative hypothesis µ 6= 100.

In our example, we considered any score falling below 95 or above 105 to be unusual. It is important
to note, however, that getting an unusual score does not necessarily mean that the null hypothesis is false.
After all, unusual scores are possible even when the null hypothesis is true. In fact, we expect to obtain
an unusual score with a probability of .025 when the null hypothesis is true. Hence, it is possible that our
decision to reject the null hypothesis is incorrect. This type of error — rejecting the null hypothesis when
it is true — is called a Type I error. The probability of making this error is determined by the criteria we
use to define a score as unusual. In this case, we used criteria (i.e., below 95 or above 105) which would
lead to a Type I error 2.5% of the time. The probability of making a Type I error is referred to as ↵ (i.e.,
alpha), and so we would say that the Type I error rate, or ↵, is .025 for this statistical test.

It is standard practice in Psychology to set ↵ to either 0.05 or 0.01. If we set ↵ = .05, then our decision
criteria would be 95.6 and 104.4:

> qnorm(.025,mean=100,sd=2.236,lower.tail=TRUE) # qnorm... not pnorm

[1] 95.61752 # the probability of getting a score <= 95.6 is 0.025...

> pnorm(95.61752,mean=100,sd=2.236,lower.tail=TRUE)

[1] 0.02499999

> qnorm(.025,mean=100,sd=2.236,lower.tail=FALSE)

[1] 104.3825 # # the probability of getting a score >= 104.38 is 0.025...
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z test for means
• is group mean of 3350 g unusually low? 

- n = 100; mean = 3350 g; standard deviation = 425 g


• our null hypothesis (H0) is:


-  sample is drawn from population with parameters that are identical for Caucasian birth weights


- distribution of BIRTHWEIGHTS: mean = u = 3480; sd = σ = 462; distribution = NORMAL


- distribution of MEANS: mean = 3480; sd = σ/sqrt(n); distribution = NORMAL


• when H0 is true, what is probability of getting sample mean (n=100) < 3350 g?


- standard deviation of mean = Standard Error of Mean (SEM) =  462/sqrt(100) = 46.2


- z = (3350-3480) / 46.2 = -2.81 [our mean is 2.81 standard deviations below ]


- p(z < -2.81) = pnorm(-2.81,0,1) = 0.0025


• if sample was drawn from population of Caucasian birth weights, then group mean is unusually low

μ

z =
(Ȳ − μȲ)

σȲ
=

(Ȳ − μ)

σ/ n

50

t test for a group mean
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why use t instead of z?



Effect of using estimate of σ

• z is defined with KNOWN population μ and σ


• only source of variation in z is sampling error of mean


• using estimate of σ introduces another source of variation in z


- estimated z depends on sample mean AND standard deviation


• does this affect our z test? ẑ =
X̄ � µX̄

�̂X̄

z =
X̄ � µX̄

�X̄

Effect of using estimate of population variation

• William Gossett applied statistics to his work in the Guinness brewery

• Under the pseudonym, Student, he investigated effects of estimating σ 

on z test

- sample variance is unbiased estimate of population variance


- but sample standard deviation is a biased estimate of population standard deviation


- sample SD underestimates population SD particularly for small sample sizes


• Discovered that using estimates of σ lead to extreme values of z more 
frequently than predicted by statistical theory

William Sealy Gosset

(aka Student)

Effect of inflating z score

• calculating z with estimated σ inflates z scores


• extreme z values occur more frequently than 
expected when H0 is True


• what effect does this have on our evaluation of H0?


• produces more Type I errors than expected
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Critical z = -1.645


p(z ≤ -1.645 | H0) = 0.05

ẑ =
X̄ � µX̄

�̂X̄

Effect of using estimate of population variation

• William Gossett applied statistics to his work in the Guinness brewery


• Under the pseudonym, Student, he investigated effects of estimating σ on z test


• Discovered that using estimates of σ lead to more “extreme” values of z than 
predicted by statistical theory


• Caused an increase in Type I errors


- especially for small samples


• Devised a new test that corrected these errors


- Student’s t test

William Sealy Gosset

(aka Student)

https://en.wikipedia.org/wiki/William_Sealy_Gosset
https://en.wikipedia.org/wiki/William_Sealy_Gosset


t distribution

• unimodal


• symmetrical around zero


• has 1 parameter:


• degrees of freedom (df)


• df alters kurtosis


• low df associated with narrower 
middle portion & heavier tails


• t approximately normal for df ⪆ 35
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Back to hypothesis testing

• When σ is NOT known


- estimated “z” is inflated


- our standardized score does not follow z distribution


- using “z” increases Type I error rate


• However, standardized score DOES follow a t distribution


• Therefore, our estimated “z” actually is a t statistic


• so we use critical values of t, not z, to evaluate null hypothesis

t =
X̄ � µX̄

�̂X̄

t test of sample mean

t test for means

• consider situation when we want to evaluate a group mean


- e.g., measure birth weight of 100 Native-American full-term babies


- our sample:


‣ mean = 3350 g; standard deviation = 425 g


• assuming our sample is drawn from typical population with UNKNOWN sigma


- u = 3480; σ = ???; distribution’s shape = ??? [we will assume it is NORMAL]


• is our sample mean of 3350 g unusually low?
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t =
X̄ � µX̄

�̂X̄



t test for means
t =

X̄ � µX̄

�̂X̄

When H0 is true, t will follow t distribution with 100-1=99 degrees of freedom.

This t distribution is very similar to a standard normal discribution.


We expect to get a sample t below the t=-1.66 approximately 5% of the time.

t test for means
• population mean is known (3480 g) but variance is unknown


• Sample: mean = 3350 g; standard deviation = 425 g; n = 100


• H0: our sample was drawn from typical population


- assuming H0 is true, is our sample mean unusually low?


• convert observed mean to a t score: 


• compare to critical value of t (tcritical = -1.66)


• observed t is more extreme than tcritical


- assuming H0 is true, our mean is unusally low


- reject null hypothesis (p < .05)

t =
(Ȳ − μȲ)

̂σȲ
=

3380 − 3480
425

100

= − 2.353
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> qt(p=.05,df=100-1)
[1] -1.660391

t =
X̄ � µX̄

�̂X̄

t test for means t =
(Ȳ − μȲ)

̂σȲ
=

3380 − 3480
425

100

= − 2.353

> boxplot(birthweight,ylab="birtweight (g)”)

> t.test(x=birthweight, mu=3450, alternative="less")

One Sample t-test

data:  birthweight
t = -2.3529, df = 99, p-value = 0.0103
alternative hypothesis: true mean is less than 3450
95 percent confidence interval:
     -Inf 3420.567
sample estimates:
mean of x 
     3350 


