

Overview

- Course Information
- What is statistics?
- Ways of collecting data
- Modes of statistical analysis
- Sampling distributions \& parameter estimation
- z tests \& t tests
- All lecture materials will be available on Avenue 2 Learn
- reading assignments
- lecture slides
- labs \& homework assignments
- Students are expected to install and use R
- labs \& exams will be in Psychology computer cluster (PC-154)
- you may use your own laptop
- Labs, homework, \& exams are open-book
- you may use any/all aids to complete exams
- you may collaborate on labs and homework assignments

Avenue To Learn

R home ${ }_{\text {https:///www.r-project.org }}$

Avenue To Learn


```
    *)
        *)
```



```
    *)
```



```
        Masmen
    *)
    Nams
    *)
    *)
        *)
        \ammonembermesmemea
        *****)
        *)
    M,
```

CRAN
https://cran.r-project.org

	The Comprehensive R Archive Network
	poomload and Instal1 R
	- Download R for Linux
隹	
	Source code for al1 Plat torres
	coil wan toutit
$\xrightarrow{\text { Pacherse }}$	
Socter	
	- Conrinuededecersion patages
	Questions tbout R

Video Tutorials on Using R

www.youtube.com/playlist?list=PLqzoL9-eJTNARFXxgwbqGo56NtbJnB37A

Video Tutorials on Using R

www.youtube.com/playlist?list=PLqzoL9-eJTNARFXxgwbqGo56NtbJnB37A

What is statistics?

Role of statistics in research

- Statistical methods help us to collect, organize, summarize, analyze, interpret, \& present data

Role of statistics in research (PPDAC)

14

Role of statistics in research

"...the purpose of statistics is to organize a useful argument from
quantitative evidence, using a form of principled rhetoric*." - Robert P. Abelson
*rhetoric: the art of effective/persuasive speaking or writin

- "The role of statistics is not to discover truth. The role of statistics is to resolve disagreements between people." - Milton Friedman
Ways of collecting data

Correlational Studies

- Measure the association between predictor \& criterion variables
- Predictor variables are not manipulated by investigator
- each event/subject comes with own set of variables
- but values on variables differ across events/subjects
- Difficult to establish causal relation between variables

Ways of Collecting Data

- Designed Experiments -
- effects of independent variables on dependent variables
- random assignment of "subjects" to conditions
- Correlational Studies -
- associations among predictor \& criterion variables
- "subjects" come with their own set of variables
- Both types can be combined into a single study/analysis (e.g., ANCOVA)

Designed Experiments

- Measure causal effects of independent variables on dependent variables
- Independent variables usually manipulated by experimenter
- not always (e.g., "age" in developmental studies)
- Whenever possible, participants should be assigned randomly to conditions

Random Assignment

- In Psychology, designed experiments use subjects that also come with their own set of intrinsic characteristics
- These characteristics (personality, motivation, intelligence, etc.) probably affect dependent variable
- HOWEVER, subjects in most designed experiments are randomly assigned to experimental conditions
- So, effects of subject differences should be UNRELATED TO EFFECTS OF INDEPENDENT VARIABLES
- big advantage of designed experiments over correlational studies

Descriptive vs.Inferential Statistics

- Descriptive statistics:
- describes important characteristics of the sample
- uses graphs \& statistics e.g., mean or standard deviation
- Inferential statistics:
- uses sample to make claims about a population
- e.g., estimate population parameters from sample statistics
- e.g., investigate differences among population by examining differences among samples [effect size \& association strength]

Modes of Statistical Analysis

Descriptive vs. Inferential
Exploratory vs. Confirmatory

Exploratory vs Confirmatory Analyses

- Exploratory Data Analysis
- first major proponent was John Tukey
- goal: discover \& summarize interesting aspects of data
- discover interesting hypotheses to test

John Tukey

- Confirmatory Data Analysis
- data are gathered \& analyzed to evaluate specific a priori hypotheses
- example: clinical drug trials
- Important not to confuse two types of analyses
- replication crisis in Psychology related to confusion about two types of research

Sampling Distributions \& Point Estimators

Inference: Samples to Populations

- Population: all events (subjects, scores, etc)) of interest
- Sample: subset of population
- random sample: each member of population has equal chance of being selected
- convenience sample (e.g., psychology undergraduates)
- Inference depends on quality of relation between sample \& population.
- e.g., Is sample representative of population?

Descriptive \& Inferential Statistics

Sample Statistics vs. Population Parameters

-We can use sample statistics to estimate population parameters

- The sample mean, \bar{Y}, is an unbiased estimate of population mean, μ
- The sample variance, s^{2}, is an unbiased estimate of population variance, σ^{2}
- [N.B. True when using ($n-1$) in the denominator]
- sample standard deviation, s, is a biased estimate of population variance, σ [slightly too small]
- The sample correlation, r, is a biased estimate of the population correlation, though the bias may be small when n is large
- What is an "unbiased" estimate?
- If the average value of many sample statistics (e.g., \bar{Y}) equals the population parameter (e.g., μ), the statistic is an unbiased estimate of the parameter

Sampling Distributions of Mean and SD

distributions of statistics for 5000 samples ($n=20$)
population mean $=100$ population variance $=100$ population sd $=10$

variance $=1066(1053)$

Confidence Interval

- 95\% Confidence Interva
- an interval estimate of the value of a population parameter (e.g., population correlation)
- e.g., the population correlation lies between "r-low" and "r-high"
- Cl95\% is calculated from data in your sample
- the interval varies across samples
- we wouldn't expect it to be exactly the same for each random sample of (X, Y) values
- in the long run, the interval contains the true population value 95% of the time
how can we calculate $\mathrm{Cl}_{95 \%}$ for our correlation, r ?
- there are several methods... we first demonstrate the percentile bootstrap method
- N.B. the method is not as important as understanding the meaning of the $\mathrm{Cl}_{95 \%}$

- our sample $r=0.52$
- what is $\mathrm{Cl}_{95 \%}$ for ρ ?
- percentile bootstrap method:
- uses (X, Y) sample as estimate of (X, Y) population
- calculate r^{*} on bootstrapped samples:
- randomly select 20 (X, Y) pairs from the data
- calculate r for each bootstrapped sample (r^{*})
- repeat MANY times
- display histogram of r^{*}

- identify range of values containing 95\% of r *

distribution of bootstrapped r^{*} values

calculate r^{*} for many bootstrapped samples of data $(n=20)$

- (X, Y) data is estimate of (X, Y) population
- create bootstrapped sample:
- randomly select 20 (X, Y) pairs from data
- calculate r for each bootstrapped sample (r^{*})
- repeat MANY times
display histogram of r^{*}
- identify range that contains 95% of r^{*}
- range is PERCENTILE BOOTSTRAP estimate of 95% confidence interval for r
- Cl95\% $=[0.17,0.77]$
- Cl95\% is our interval estimate of population parameter ρ

Confidence Interval of r

- Fisher's z transformation of r
- transformed r's are approximately normal

Sample Correlation ($\mathrm{n}=10$)

Sample Correlation ($\mathrm{n}=10$)

distribution of bootstrapped r^{*} values

calculate r^{*} for many bootstrapped samples of data $(n=20)$

- (X, Y) data is estimate of (X, Y) population
- create bootstrapped sample:
- randomly select 20 (X,Y) pairs from data
- calculate r for each bootstrapped sample (r^{*})
- repeat MANY times
- display histogram of r*
- identify range that contains 95% of r^{*}
- range is PERCENTILE BOOTSTRAP estimate of 95% confidence interval for r
- Cl95\% $=[0.17,0.77]$
- Cl95\% is our interval estimate of population parameter ρ

Confidence Interval of r

- Fisher's z transformation of r
- transformed r's are approximately normal
- calculate 95% Cl by calculating critical values that capture middle 95%

transformed r

Confidence Interval of r

1. convert r to z
2. calculate standard deviation of sampling distribution $1 /$ sqrt((-3)
3. calculate values of z that cutoff lower/upper 2.5% of distribution
4. calculate Confidence Interval defined by Fisher Z values
5. transform Z values to r values

1 (sampz <- $0.5 * \log ((1+$ ourSampR)/(1-ourSampR))) [1] 0.5763398
2 (2 SE <- 1/sqrt(n-3)
[1] 0.243
(zCrit <- qnorm(0.975,0,1)) \# \pm zCrit
[1] 1.96
4 (zCI <- c(sampZ-zCrit*zSE, sampZ+zCrit*zSE))
[1] 0.10097871 .0517008
5 (rCI <- $\left.(\exp (2 * z C I)-1) /\left(\exp \left(2^{*} z C I\right)+1\right)\right)$
[1] 0.10063680 .7824667

$$
\begin{aligned}
& \text { 1. Convert t toz' ' using Fisheres } \mathrm{z}^{\prime} \text { transform: } \\
& z^{\prime}=0.5 \ln \frac{1+r}{1-r} \\
& \text { 2. Compute confidence intervalu using the resulting } z \text { z value: } \\
& C I=\left(z^{\prime}-z_{\text {critial }}^{\prime} S E, z^{\prime}+z_{\text {critial }}^{\prime} S E\right)
\end{aligned}
$$

$$
\begin{aligned}
& S E=\frac{1}{\sqrt{n-3}} \\
& \text { Conert the confident intervals in terms ofz z back into r values } \\
& r=\frac{e^{2 z}-1}{e^{2 z}+1}=\tanh (z)
\end{aligned}
$$

Confidence Interval of r

```
1 (sampZ <- 0.5 * log((1+ourSampR)/(1-ourSampR))
[1] 0.5763398
2 (zSE <- 1/sqrt(n-3))
[1] 0.243
3(zCrit <- gnorm(0.975,0,1) ) # \pm zCrit
[1] 1.96
4 (zCI <- c(sampZ-zCrit*zSE, sampZ+zCrit*zSE))
[1] 0.1009787 1.0517008
5 (rCI <- (exp(2*zCI)-1)/(exp(2*zCI)+1))
[1] 0.1006368 0.7824667
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
1 ( sampZ <- 0.5 * log((1+ourSampR)/(1-ourSampR)) \\
[1] 0.5763398
\end{tabular} \\
\hline 2 (zSE <-1/sqrt(n-3) ) \\
\hline [1] 0.243 \\
\hline 3 (zCrit <- qnorm(0.975,0,1) ) \# \(\pm\) zCrit \\
\hline [1] 1.96 \\
\hline 4 ( zCI <- c(sampZ-zCrit*zSE, sampZ+zCrit*zSE) ) \\
\hline [1] 0.10097871 .0517008 \\
\hline \(5\left(\mathrm{rCI}<-\left(\exp \left(2^{*} \mathrm{zCI}\right)-1\right) /\left(\exp \left(2^{*} \mathrm{zCI}\right)+1\right)\right)\) \\
\hline 0.10063680 .7824667 \\
\hline
\end{tabular}
```

$>\operatorname{cor}$. test (X, Y)
Pearson's product-moment correlation
data: X and Y
$t=2.5828, d f=18, p$-value $=0.01876$
$t=2.5828, \mathrm{~d}=18, \mathrm{p}$-value $=0.01876$
alternative hypothesis: true correlation is not equal to 0
aternative hypothesis: true corr
95 percent confidence interval:
95 percent confidence
0.10063680 .7824667
sample estimates:
cor
cor
0.52

z test

A woman in the US has just given birth to a full-term baby weighing 291 kg . Is this weight unusually low?

Density Functions \& Probability

Figure 2: The probability of randomly selecting a value of x that is $\leq C$ - i.e., $P(x \leq C)$ - corresponds to the area under the probability density function that is to the left of C. $P(x \geq C)$ equals the area under the curve that is to the right of C .

z test

$$
z=\frac{(Y-\mu)}{\sigma}
$$

- z is a standardized score: \# standard deviations from mean
- used to evaluate individual scores and group mean when population variance is known
- when scores or means are distributed normally
- z is distributed normally with mean=0 and std dev=1
- 95% of values fall between ± 1.96
- 99% of values fall between ± 2.56

z test

- In US, population of Caucasian (non-Hispanic) full-term infants has a mean weight of 3480 g and a standard deviation of 462 g
- The weights are distributed approximately normally
- A weight of 2910 g is 1.23 standard deviations below the mean: $-z=(2910-3480) / 462=-1.23$
- What is the probability of observing a weight that is at least this low?

z test

p(weight < 2910)
$=$ pnorm(2910, mean=3480, sd=462)
$=0.109$
$p(z<-1.23)$
$=\operatorname{pnorm}(-1.23$,mean $=0$, sd=1)
= 0.109

z test

- In US, population of Caucasian (non-Hispanic) full-term infants has a mean weight of 3480 g and a standard deviation of 462 g .
- The weights are distributed approximately normally.
- A weight of 2910 g is 1.23 standard deviations below the mean:
$-z=(2910-3480) / 462=-1.23$
- What is the probability of observing a weight at least this low?
$-\mathrm{p}(\mathrm{z}<-1.23)=0.109$

z test for means
 $$
z=\frac{\left(\bar{Y}-\mu_{\bar{Y}}\right)}{\sigma_{\bar{Y}}}
$$

- consider situation when we want to evaluate a group mean
- e.g.,measure birth weight of 100 Native-American full-term babies
- mean $=3350 \mathrm{~g}$; standard deviation $=425 \mathrm{~g}$
- is group mean of 3350 g unusually low?

z test for a group mean

z test for means

- population mean \& variance are known
- mean $=3350 \mathrm{~g}$; standard deviation $=425 \mathrm{~g}$
- use z test
- convert observed mean to a z score: $\quad z=\frac{\left(\bar{Y}-\mu_{\bar{Y}}\right)}{\sigma_{\bar{Y}}}$

Density Functions \& Probability

z test for means

- is group mean of 3350 g unusually low?
. $\mathrm{n}=100$; mean $=3350 \mathrm{~g}$; standard deviation $=425 \mathrm{~g}$
- our null hypothesis (HO) is:
- sample is drawn from population with parameters that are identical for Caucasian birth weights
- distribution of BIRTHWEIGHTS: mean $=u=3480$; $s d=\sigma=462$; distribution $=$ NORMAL
- distribution of MEANS: mean $=3480 ; \mathbf{s d}=\sigma /$ sqrt (n); distribution $=$ NORMAL
- when HO is true, what is probability of getting sample mean $(\mathrm{n}=100)<3350 \mathrm{~g}$?
- standard deviation of mean $=$ Standard Error of Mean (SEM) $=462 / \mathrm{sqrt}(100)=46.2$
$-z=(3350-3480) / 46.2=-2.81$ [our mean is 2.81 standard deviations below μ]
$-p(z<-2.81)=\operatorname{pnorm}(-2.81,0,1)=0.0025$
- if sample was drawn from population of Caucasian birth weights, then group mean is unusually low
t test for a group mean
why use t instead of z ?

Effect of using estimate of σ

- z is defined with KNOWN population μ and σ
- only source of variation in z is sampling error of mean

$$
z=\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}
$$

- using estimate of σ introduces another source of variation in z - estimated z depends on sample mean AND standard deviation
- does this affect our z test?

$$
\hat{z}=\frac{\bar{X}-\mu_{\bar{X}}}{\hat{\sigma}_{\bar{X}}}
$$

Effect of using estimate of population variation

- William Gossett applied statistics to his work in the Guinness brewery
- Under the pseudonym, Student, he investigated effects of estimating σ on z test
- sample variance is unbiased estimate of population variance
- but sample standard deviation is a biased estimate of population standard deviation
- sample SD underestimates population SD particularly for small sample sizes
- Discovered that using estimates of σ lead to extreme values of z more frequently than predicted by statistical theory

Effect of inflating z score

- calculating z with estimated σ inflates z scores
- extreme z values occur more frequently than expected when HO is True
- what effect does this have on our evaluation of H 0 ?
- produces more Type I errors than expected

Effect of using estimate of population variation

- William Gossett applied statistics to his work in the Guinness brewery
- Under the pseudonym, Student, he investigated effects of estimating σ on z test
- Discovered that using estimates of σ lead to more "extreme" values of z than
predicted by statistical theory
- Caused an increase in Type I errors
- especially for small samples
- Devised a new test that corrected these errors
- Student's t test

t distribution

- unimodal
- symmetrical around zero
- has 1 parameter:
- degrees of freedom (df)
- df alters kurtosis
- low df associated with narrower middle portion \& heavier tails
- t approximately normal for $\mathrm{df} \approx 35$

Back to hypothesis testing

$$
t=\frac{\bar{X}-\mu_{\bar{X}}}{\hat{\sigma}_{\bar{X}}}
$$

- When σ is NOT known
- estimated " z " is inflated
- our standardized score does not follow z distribution
- using "z" increases Type I error rate
- However, standardized score DOES follow a t distribution
- Therefore, our estimated "z" actually is a t statistic
- so we use critical values of t, not z, to evaluate null hypothesis

t test for means

$$
t=\frac{\bar{X}-\mu_{\bar{X}}}{\hat{\sigma}_{\bar{X}}}
$$

- consider situation when we want to evaluate a group mean
- e.g., measure birth weight of 100 Native-American full-term babies
- our sample:
- mean $=3350 \mathrm{~g}$; standard deviation $=425 \mathrm{~g}$
- assuming our sample is drawn from typical population with UNKNOWN sigma
$-u=3480 ; \sigma=$???; distribution's shape $=$??? [we will assume it is NORMAL]
- is our sample mean of 3350 g unusually low?

t test for means

SS

t test for means

- population mean is known (3480 g) but variance is unknown
- Sample: mean $=3350 \mathrm{~g} ;$ standard deviation $=425 \mathrm{~g} ; \mathrm{n}=100$
- HO: our sample was drawn from typical population
- assuming HO is true, is our sample mean unusually low?
convert observed mean to a t score:
- compare to critical value of t ($\mathrm{t}_{\text {critical }}=-1.66$)
- observed t is more extreme than tcritical
- assuming HO is true, our mean is unusally low
- reject null hypothesis (p < .05)

$$
t=\frac{\bar{X}-\mu_{\bar{X}}}{\hat{\sigma}_{\bar{X}}}
$$

$$
t=\frac{\left(\bar{Y}-\mu_{\bar{Y}}\right)}{\hat{\sigma}_{\bar{Y}}}=\frac{3380-3480}{\frac{425}{\sqrt{100}}}=-2.353
$$

> $\mathrm{qt}(\mathrm{p}=.05, \mathrm{df}=100-1)$
[1] -1.660391
$t=\frac{\left(\bar{Y}-\mu_{\bar{Y}}\right)}{\hat{\sigma}_{\bar{Y}}}=\frac{3380-3480}{\frac{425}{\sqrt{100}}}=-2.353$

3350

