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9 Designs with Covariates
9.1 Blocking
Consider the following hypothetical experiment. We want to measure the effect of a drug on
locomotor activity in hyperactive children. Children are assigned randomly to three groups
that differ in the dosage of the drug (i.e., zero, low, and high), and the dependent measure
is the amount of locomotor activity during some fixed period of time after administration
of the drug. Now, children in our sample are likely to vary in the amount of locomotor
activity that they produce before the administration of the drug: some children are more
active than others. Should we worry about this inter-subject variability? Probably. These
individual differences are likely to increase the variability of our dependent measure, and
therefore make it more difficult to detect a significant effect of the drug. Is there some way
of reducing the impact of these individual differences on the sensitivity of our experiment?

One way of addressing this issue would be to screen subjects and test only those children
whose activity fell within a limited range. However, using this strategy would mean that
our conclusions would be restricted to children exhibiting that particular level of activity
used in your experiment. Another strategy would be to divide pre-drug activity into several
levels (e.g.,“low”, “medium”, “high”, and “very high”), select N subjects at each level, and
then randomly assign subjects to a drug condition. This scheme of creating homogeneous
sets of subjects is referred to as blocking; in this case our blocking variable would be
pre-drug, or baseline, activity. Because subjects within each block are assigned randomly
to treatment groups, this type of design is referred to as a randomized blocks design1.
When analyzing the data, baseline activity is treated as a factor. Incorporating the blocking
variable into our statistical model means that variability in the dependent variable that
is related to baseline activity will be assigned to the the blocking factor instead of error.
Hence, error will be reduced.

1Typically, randomized block designs have only a subjects per block, where a is the number of levels on
the treatment variable. In other words, only one subject in each block would be assigned to each level of the
treatment variable. The current design, which has 12 subjects per block assigned randomly to 3 treatments
(i.e., 4 subjects per treatment) is an example of a generalized randomized block design (Kirk, 1995).
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The following example illustrates a randomized blocks experiment. First, we create
fake data. The variable activity represents basline locomotor activity in 48 subjects.
The variable block is a factor that divides activity into four groups that differ in mean
activity: in other words, block is our blocking variable. Next, we create the effects (i.e.,
the alpha’s) associated with each level of the drug and store them in drug.effect. The
variable drug is a factor that indicates the level of drug received by the subjects. Finally,
we create a fake dependent variable y. Notice that y is related linearly to activity, and
is affected by the dosage of the drug.

# sum-to-zero definition of factor effects
options(contrasts=c("contr.sum","contr.poly"))
set.seed(437);
activity <- sort(rnorm(n=48,mean=10,sd=3));
block <- factor(rep(c("low","med","high","very"),each=12),

levels=c("low","med","high","very"),
ordered=FALSE);

drug <- factor(rep(c("zero","low","high","high","low","zero"),times=8),
levels=c("zero","low","high"),
ordered=FALSE)

drug.effect<-rep(c(-1,0,1,1,0,-1),times=8)
y <- 1 + 0.6*activity + 1.1*drug.effect + rnorm(activity,mean=0,sd=3);
theData <- data.frame(y, block,drug,activity,drug.effect)

First, we want to see if our blocking variable really is capturing variability among our
subjects. The next several commands list the mean baseline activity within each block of
subjects and then determines if the blocks differ significantly. The blocks do differ, so we
succeeded in creating groups in which the between-block differences are large relative to
the within-block differences.

with(theData, tapply(activity, block,mean));

## low med high very
## 5.154 8.008 10.287 13.819

summary(aov(activity ~ block, data=theData) );

## Df Sum Sq Mean Sq F value Pr(>F)
## block 3 483 161.0 106 <2e-16 ∗∗∗
## Residuals 44 67 1.5
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
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Now we evaluate two nested linear models: The first model does not include our blocking
factor, but the second one does.

aov.1<-aov(y~drug,data=theData)
aov.2<-aov(y~block+drug+block:drug,data=theData)
summary(aov.1)

## Df Sum Sq Mean Sq F value Pr(>F)
## drug 2 37 18.54 2.17 0.13
## Residuals 45 384 8.53

summary(aov.2)

## Df Sum Sq Mean Sq F value Pr(>F)
## block 3 129.8 43.3 6.96 0.00082 ∗∗∗
## drug 2 37.1 18.5 2.98 0.06329 .
## block:drug 6 30.4 5.1 0.81 0.56580
## Residuals 36 223.7 6.2
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

Notice that SStotal is the same for both analyses, however SSresiduals is much smaller in
the analysis that includes block. Why? Because SSresiduals in aov.1 has been partitioned
into two pieces: one due to error and another due to variation among blocks. You can
verify this statement by summing the sums-of-squares for residuals, block, and block:drug
in aov.2: the total should equal SSresidual from aov.1. The reduction in SSresiduals from
383.96 to 223.748 means that Fdrug increases from 2.1727 to 2.9828, although it still is not
significant (df = (2, 36), p = 0.063). Hence, even after accounting for the effects of block
(i.e., baseline activity), we fail to reject the null hypothesis of no effect of drug. The effect
of block is significant, but that is not surprising.

9.2 ancova
I created the fake dependent variable, y, so that it was linearly related to baseline activity.
Our blocking variable was a qualitative factor, however, and so did not take full advantage
of the structure in the data. An alternative approach would be to include the numeric
values themselves, rather than the level of a blocking factor, into our model. This is the
approach used in the analysis of covariance. In the analysis of covariance, or ANCOVA,
SSdrug is estimated by comparing the residuals from the following models:

Y ∼ X +A

Y ∼ X

3



Bennett, PJ PSYCH 710 Chapter 9

where X and A are the covariate and grouping variables, respectively. In other words, SSA
represents the variation in Y that is due to A after controlling for the linear association
between Y and X. The following commands perform an analysis of covariance on the
current data:

lm.1<-lm(y~activity+drug,data=theData)
lm.2<-lm(y~activity,data=theData)
anova(lm.2,lm.1)

## Analysis of Variance Table
##
## Model 1: y ~ activity
## Model 2: y ~ activity + drug
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 46 279
## 2 44 240 2 39.3 3.61 0.035 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

SSdrug equals 39.286, which is significant (F = 3.6066, p = 0.035). The same results can
be obtained by using drop1, which also calculates SSactivity after controlling for the effects
of drug.

drop1(lm.1,.~.,test="F")

## Single term deletions
##
## Model:
## y ~ activity + drug
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 240 85.2
## activity 1 144.3 384 105.8 26.50 5.9e-06 ∗∗∗
## drug 2 39.3 279 88.5 3.61 0.035 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

Finally, we could simply construct an ANOVA table from the full model:

anova(lm.1)
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## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## activity 1 142.1 142.1 26.09 6.7e-06 ∗∗∗
## drug 2 39.3 19.6 3.61 0.035 ∗
## Residuals 44 239.6 5.4
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

R prints sequential sums of squares, so SSdrug is calculated after controlling for the linear
association between activity and the dependent variable.

So, the analysis of covariance indicates that the effect of drug is significant after con-
trolling for the linear association between the covariate and independent variable. Note
that the ANCOVA is more sensitive than the blocking strategy used in the previous sec-
tion. This increased sensitivity reflects the fact that the relation between the covariate and
dependent variable is linear. If the relation was nonlinear, then the blocking design may
have been more sensitive. (N.B. It is possible, however, to alter the ANCOVA model to
include a nonlinear term). Note also that the covariate in the ANCOVA model uses only
a single degree of freedom, whereas the blocking factor used two degrees of freedom.

9.2.1 graphical representation

Figure 1 is a graphical illustration of an ancova model fit to data from two treatment
groups. The two dashed lines are the best-fitting (least-squares) lines for the two sets of
data, with the constraint that the lines have the same slopes. Because we defined our
effects (i.e., the α’s) using the sum-to-zero constraint, the intercepts for the two lines —
i.e., the value of Y when the covariate, X, is zero — are µ+α1 and µ+α2. In this example
there are only two groups,therefore α2 = −α1 and the two intercepts are µ+α1 and µ−α1.

9.2.2 adjusted means

The adjusted means for the two groups correspond to the height at which the regression
lines intersect the vertical dotted line located at the overall mean of the covariate, X̄ (see
Figure 1). In other words, the adjusted means represent the means that we would expect
if all of the groups were equivalent on the covariate. The adjusted means can be calculated
for each group from the coefficients of the ancova model:

Ȳ ′
j = µ+ βX̄ + αj

where β is the coefficient for the covariate (i.e., the slope of the lines in Figure 1), µ is the
model’s intercept, and αj is the effect for group j. The coefficients for the model fit to the
current data are

5



Bennett, PJ PSYCH 710 Chapter 9

µ + α1

µ + α2

µ

X

de
pe

nd
en

t v
ar

ia
bl

e 
(Y

)
covariate (X)

Figure 1: Graphical illustration of ancova model.
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dummy.coef(lm.1);

## Full coefficients are
##
## (Intercept): 1.285
## activity: 0.5125
## drug: zero low high
## -0.8216 -0.4387 1.2603

The mean of the covariate is

mean(theData$activity)

## [1] 9.317

so the adjusted means for the three treatment groups are

1.28519 + 0.5124*9.3168-0.8216

## [1] 5.238

1.28519 + 0.5124*9.3168-0.4386

## [1] 5.621

1.28519 + 0.5124*9.3168+1.2603

## [1] 7.319

There are some advantages to using a centered covariate (i.e., a covariate that is centered
on zero). A centered variable is obtained simply by subtracting the mean value from the
original variable. The next few commands create a centered covariate activity.c and
then refit the ancova model using the new covariate.

theData$activity.c <- theData$activity - mean(theData$activity)
lm.3 <- lm(y~activity.c + drug,data=theData)
drop1(lm.3,.~.,test="F")
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## Single term deletions
##
## Model:
## y ~ activity.c + drug
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 240 85.2
## activity.c 1 144.3 384 105.8 26.50 5.9e-06 ∗∗∗
## drug 2 39.3 279 88.5 3.61 0.035 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

dummy.coef(lm.3)

## Full coefficients are
##
## (Intercept): 6.06
## activity.c: 0.5125
## drug: zero low high
## -0.8216 -0.4387 1.2603

The main results are the same; however, the intercept now corresponds to the point at
which the average regression line (i.e., the solid line in Figure 1) intersects the vertical
dotted line (i.e., X = X̄). Therefore, the adjusted means can be computed by simply
adding the intercept and alpha’s:

6.0596-0.8216

## [1] 5.238

6.0596-0.4386

## [1] 5.621

6.0596+1.2603

## [1] 7.32

The values are the same (to within rounding error) of those obtained previously.
The effects package can be used to calculate the adjusted means. If you have not yet

installed the package on your computer, do so now using the following command:
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install.packages("effects")

Next, you must load the package into memory with the command library(effects)
command. Note that you only need to use this command once per R session. The adjusted
means are calculated thusly:

library(effects)
effect(term="drug",lm.1)

##
## drug effect
## drug
## zero low high
## 5.238 5.621 7.320

effect(term="drug",lm.3)

##
## drug effect
## drug
## zero low high
## 5.238 5.621 7.320

9.2.3 homogeneity of slopes assumption

The ancova model fits regression lines to each group with the constraint that the slopes of
the lines are equal. This constraint is equivalent to assuming that there is no interaction
between the covariate and the treatment variable. If the assumption is valid, then the
differences between groups — the vertical distances between the regression lines — are
constant for all values of the covariate. However, if there is an interaction, then the
differences between groups will depend on the value of the covariate. In this situation, it
may not make sense to talk about the main effect of the treatment variable. Therefore,
it is important to test the validity of the homogeneity of slopes assumption by comparing
the goodness of fit obtained by models that do and do not have an interaction term:

lm.4 <- lm(y~activity.c + drug + activity.c:drug,data=theData)
anova(lm.3,lm.4)

## Analysis of Variance Table
##

9



Bennett, PJ PSYCH 710 Chapter 9

## Model 1: y ~ activity.c + drug
## Model 2: y ~ activity.c + drug + activity.c:drug
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 44 240
## 2 42 225 2 14.3 1.33 0.27

Alternatively, we can simply list the anova table for the full model:

anova(lm.4)

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## activity.c 1 142.1 142.1 26.49 6.6e-06 ∗∗∗
## drug 2 39.3 19.6 3.66 0.034 ∗
## activity.c:drug 2 14.3 7.1 1.33 0.275
## Residuals 42 225.3 5.4
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

SSinteraction = 14.298, which is not significant (F = 1.332, df = (2, 42), p = 0.274).
Therefore, the assumption appears to be valid for these data.

9.3 strength of association
The strength of association between the treatment variable and the dependent variable —
omega squared — can be estimated with the following equation:

ω2 =
dfeffect(MSeffect −MSresiduals)

SStotal +MSresiduals

I’ll illustrate this calculation using the data presented in Table 9.7 in Maxwell and Delaney
(2004).

# mw97<-read.table("chapter_9_table_7.dat")
fn <- "http://pnb.mcmaster.ca/bennett/psy710/datasets/mw/chapter_9_table_7.dat"
mw97 <- read.table(file=url(fn))
names(mw97)<-c("group","pre","post")
mw97$treatment<-factor(mw97$group,labels=c("ssri","placebo","waitList"),ordered=FALSE)
summary(mw97)

## group pre post treatment
## Min. :1 Min. : 9.0 Min. : 0.0 ssri :10
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## 1st Qu.:1 1st Qu.:14.0 1st Qu.: 7.5 placebo :10
## Median :2 Median :16.0 Median :10.0 waitList:10
## Mean :2 Mean :17.4 Mean :11.2
## 3rd Qu.:3 3rd Qu.:20.8 3rd Qu.:15.0
## Max. :3 Max. :29.0 Max. :25.0

mw97[1:4,]

## group pre post treatment
## 1 1 18 12 ssri
## 2 1 16 0 ssri
## 3 1 16 10 ssri
## 4 1 15 9 ssri

mw97.lm.1<-lm(post~pre+treatment,data=mw97)
drop1(mw97.lm.1,.~.,test="F")

## Single term deletions
##
## Model:
## post ~ pre + treatment
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 756 105
## pre 1 313 1070 113 10.77 0.0029 ∗∗
## treatment 2 217 973 108 3.73 0.0376 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

anova(mw97.lm.1)

## Analysis of Variance Table
##
## Response: post
## Df Sum Sq Mean Sq F value Pr(>F)
## pre 1 337 337 11.57 0.0022 ∗∗
## treatment 2 217 109 3.73 0.0376 ∗
## Residuals 26 756 29
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

df.effect <- 2;
SS.total <- 336.68+217.15+756.33;
(omega.2 <- df.effect*(108.57-29.09) / (SS.total+29.09) )

## [1] 0.1187

11



Bennett, PJ PSYCH 710 Chapter 9

The value of ω2 is 0.118, so the treatment accounts for approximately 12% of the total
variance in post-test scores in the population. Note that this definition of association
strength treats the covariate as an intrinsic factor. In other words, the value of ω2 is the
proportion of variance in the dependent measure that is explained by the treatment while
ignoring the effects of the covariate. An alternative measure of association strength, partial
omega squared, is the the proportion of variance that is accounted for after controlling for
the effects of the covariate and is defined by the equation

ω2
partial(group) =

dfgroup(Fgroup − 1)

dfgroup(Fgroup − 1) +N

where N is the number of subjects in the experiment (Keppel and Wickens, 2004). For the
data in Table 9.7, partial omega squared is 0.154.

9.4 comparisons among group means
Tests of specific contrasts are done on adjusted means. The value of a linear contrast is
obtained in the usual way:

ψ̂ =
a∑
j=1

cj Ȳ
′
j

However, calculation of the variance of the contrast differs from before:

s2
ψ̂
=MSresiduals

 a∑
j=1

c2j
nj

+

(∑a
j=1 cjX̄j

)2∑a
j=1

∑n
i=1(Xij − X̄j)2


where MSresiduals is taken from the full model (e.g., lm.1). The test statistic is

F =
ψ̂2

s2
ψ̂

which is distributed as an F variable with 1 and N − a − 1 degrees of freedom. If the
comparisons are post-hoc, you should use the Scheffe method to control Type I error rate.
The critical value of F for a study that had a levels on the treatment variable would be
(a− 1)Fα(df1 = (a− 1), df2 = N − a− 1), where α is the desired Type I error rate.

These calculations are tedious, so I have written a function for R that do them for you.

psi.adj<-function(y.adj,x,group,c.weights,ms.error){
groups <- levels(group);
ng <- length(groups); # number of group levels
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x.means <- tapply(x,group,mean); # group means on X
n<-tapply(x,group,length); # group n
psi <- sum(c.weights*y.adj); # value of comparison
# calculate variance of comparison
term.1 <- sum( c.weights*c.weights/n);
term.2 <- (sum(c.weights*x.means))^2;
x.bar.j <-tmp<-rep(x=x.means,times=n);
ss.x <- sum( (x-x.bar.j)^2 );
psi.var <- ms.error * (term.1 + (term.2 / ss.x) );
F.psi <- (psi*psi)/psi.var; # F value
p <- 1-pf(F.psi,df1=1,df2=(length(x)-ng-1)); # p value
the.results <- list(psi=psi,psi.var=psi.var,F=F.psi,p.value=p)
the.results # show results
}

The psi.adj function can be loaded into R with the following command:

source("http://pnb.mcmaster.ca/bennett/psy710/Rscripts/psi_adj.R")

Alternatively, you can type the psi.adj commands into a word processor, save the com-
mands as an ascii text file placed in your working directory, and then read it into R using
the command source("filename.txt") command. The following commands show how
to use it evaluate all pairwise comparisons between groups in the activity example:

anova(lm.1)

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## activity 1 142.1 142.1 26.09 6.7e-06 ∗∗∗
## drug 2 39.3 19.6 3.61 0.035 ∗
## Residuals 44 239.6 5.4
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

MS.resid <- 5.446
df.resid <- 44
effect(term="drug",mod=lm.1)

##
## drug effect
## drug
## zero low high
## 5.238 5.621 7.320
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y.adj<-c(5.234,5.62,7.32)
X <- theData$activity
G <- theData$drug
psi.adj(y.adj,x=X,group=G,c.weights=c(-1,1,0),MS.resid)

## $psi
## [1] 0.386
##
## $psi.var
## [1] 0.6808
##
## $F
## [1] 0.2189
##
## $p.value
## [1] 0.6422

psi.adj(y.adj,x=X,group=G,c.weights=c(-1,0,1),MS.resid)

## $psi
## [1] 2.086
##
## $psi.var
## [1] 0.6809
##
## $F
## [1] 6.391
##
## $p.value
## [1] 0.01514

psi.adj(y.adj,x=X,group=G,c.weights=c(0,-1,1),MS.resid)

## $psi
## [1] 1.7
##
## $psi.var
## [1] 0.6808
##
## $F
## [1] 4.245
##
## $p.value
## [1] 0.04532
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The p-values are not adjusted for multiple comparisons. To use Tukey’s HSD, you need to
compare the observed F ’s to Tukey’s critical value of F that is derived from the formula
in Table 5.16 of Maxwell and Delaney (2004, page 262):

alpha.fw <- .05
F.tukey.critical <- ( qtukey(1-alpha.fw, nmeans=3, df=df.resid)^2 ) / 2
F.tukey.critical

## [1] 5.883

Only the second comparison, between the zero and high groups, is significant (p < .05).

9.4.1 comparisons using emmeans

Comparisons among adjusted means can be done using the R package emmeans. The
following code chunk uses emmeans to compute the three contrasts described in the previous
section. Note that the linear model object must be transformed into an emmGrid object
before performing the contrasts.

library(emmeans)
( emm.obj <- emmeans(lm.1,specs=~activity+drug) ) # estimated marginal means

## activity drug emmean SE df lower.CL upper.CL
## 9.32 zero 5.24 0.583 44 4.06 6.41
## 9.32 low 5.62 0.583 44 4.45 6.80
## 9.32 high 7.32 0.584 44 6.14 8.50
##
## Confidence level used: 0.95

# contrast weights:
c1 <- c(-1,1,0)
c2 <- c(-1,0,1)
c3 <- c(0,-1,1)
con.res <- contrast(emm.obj,method=list(c1=c1,c2=c2,c3=c3))
summary(con.res,adjust="none") # no p-value adjustment

## contrast estimate SE df t.ratio p.value
## c1 0.383 0.825 44 0.464 0.6449
## c2 2.082 0.825 44 2.523 0.0153
## c3 1.699 0.825 44 2.059 0.0454
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Note that the p values are essentially identical to the ones provided by psi.adj: emmeans
performs the contrasts on the adjusted group means. It is a simple matter to adjust the p
values using the Tukey HSD method:

summary(con.res,adjust="tukey") # tukey adjustment

## contrast estimate SE df t.ratio p.value
## c1 0.383 0.825 44 0.464 0.9552
## c2 2.082 0.825 44 2.523 0.0453
## c3 1.699 0.825 44 2.059 0.1302
##
## P value adjustment: sidak method for 3 tests

As we found in the previous section, only the second pairwise comparison is significant.

9.4.2 Tukey tests with TukeyHSD & multcomp

Tukey tests can be performed with TukeyHSD and the glht command in the multcomp
package. However, these procedures perform the comparisons on the marginal means and
ignore the covariate. In other words, the comparisons are performed on the unadjusted
group means.

aov.1 <- aov(y~activity+drug,data=theData)
TukeyHSD(aov.1,which="drug") # pairwise tests on unadjusted group means

## Tukey multiple comparisons of means
## 95% family -wise confidence level
##
## Fit: aov(formula = y ~ activity + drug, data = theData)
##
## $drug
## diff lwr upr p adj
## low-zero 0.3829 -1.61840 2.384 0.8884
## high-zero 2.0815 0.08021 4.083 0.0399
## high-low 1.6986 -0.30265 3.700 0.1104

# install.packages("multcomp")
library(multcomp)
drug.tukey <- glht(lm.1,linfct=mcp(drug="Tukey") ) # pairwise Tukey tests
summary(drug.tukey) # comparisons on unadjusted means
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##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = y ~ activity + drug, data = theData)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## low - zero == 0 0.383 0.825 0.46 0.89
## high - zero == 0 2.082 0.825 2.52 0.04 ∗
## high - low == 0 1.699 0.825 2.06 0.11
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single -step method)

9.5 Generalization of the ANCOVA model
9.5.1 nonlinear relations

The basic ANCOVA model assumes that the relation between the dependent variable and
covariate is linear. However, this is not a necessary restriction, and the model can be
generalized to include nonlinear relations. For example, comparing the following models
would estimate SSgroup after controlling for the linear and quadratic effects of the covariate,
X:

Yij = µ+ αj + β1Xij + β2X
2
ij + ϵij

Yij = µ+ β1Xij + β2X
2
ij + ϵij

Adjusted means are calculated by computing Y when X = X̄. The model assumes that
both the linear and quadratic components of X do not interact with the treatment variable.

9.5.2 multiple factors

It is also possible to include more than one factor.

Yij = µ+ αj + γk + βXij + (αγ)jk + ϵij

Once again, the model assumes that the main effects for each factor, and the interaction,
do not interact with the covariate.

When analyzing designs that include two or more factors, we often will want to do
comparisons among adjusted row and column marginal means, as well as adjusted cell
means. Again, computational details can be found in Kirk (1995).
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9.6 An alternative to ANCOVA
You might have wondered why an ANCOVA was necessary for the data presented here.
Why not just conduct an ANOVA on the difference scores computed subtracting pre- and
post-treatment activity levels? I conduct that analysis here:

theData$diff <- theData$y - theData$activity;
diff.lm.1 <- lm(diff~drug,data=theData)
anova(diff.lm.1);

## Analysis of Variance Table
##
## Response: diff
## Df Sum Sq Mean Sq F value Pr(>F)
## drug 2 41 20.73 2.52 0.092 .
## Residuals 45 370 8.23
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The effect of group is not significant. Obviously, this analysis was less sensitive than the
ANCOVA. Why? The reason is that the difference score approach is based on a more
restrictive model than the one used in ANCOVA. The model is

Yij −Xij = µ+ αj + ϵij

which can be re-written as
Yij = µ+ αj +Xij + ϵij

This model is similar to the one used in ANCOVA, except that the slope of the linear
relation between Y and X is assumed to be one. When the linear relation does have a
slope of one (i.e., β = 1), then an ANOVA on difference scroes will yield the same results
as an ANCOVA. When β ̸= 1, ANCOVA will have greater sensitivity.
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