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7 Factorial Designs
In previous chapters we analyzed data from so-called one-way experimental designs, in which subjects
were randomly assigned to groups that differed on a single treatment or grouping variable. In this
chapter we will analyze data from factorial experiments. Factorial experiments contain two or
more experimental variables. In a completely crossed factorial experiment, each level of every variable
is combined with each level of every other variable. So, if there are two variables with a and b levels,
then there will be ab combinations of treatments, which are sometimes called cells. Subjects are then
assigned randomly to the various combinations of treatments. Experiments that have equal n per
cell are called balanced designs. Designs with unequal n are unbalanced. We will start by analyzing
data from balanced designs, and then consider unbalanced data near the end of this chapter.

Our analyses will focus on factorial experiments with two experimental factors, A and B. (Higher-
order factorial designs are examined in chapter 8.) The design of a factorial experiment that has two
variables can be represented as a two-dimensional table, with the rows representing different levels
of variable A and the columns representing different levels of variable B. Each cell within the table
corresponds to a particular combination of treatments. For example, a1b3, which is the cell in row 1
and column 3, refers to the combination of level 1 of A and level 3 in B. I will often use the terms
“cell” or group to refer to a particular combination of treatments. Cell jk refers to the cell in row j
and column k.

7.1 Linear Model
The linear model for data collected in a two factor factorial experiment can be expressed as

Yijk = µ+ αj + βk + (αβ)jk + ϵijk (1)

where Yijk is the score of individual i in cell jk, µ is a constant, αj is the effect of treatment aj, βk is
the effect of bk, (αβ)jk is the effect of the combination ajbk, and ϵijk is the error term. Notice that αj

is the effect of a particular level of A without reference to B. In other words, αj represents the effect
of being in row aj regardless of the level of B. Similarly, βk represents the effect of being in column
bk regardless of the level of A. As we shall see, the α’s and β’s constitute the main effects of A
and B, respectively. The effect (αβ)jk, on the other hand, refers to the effect of begin in a particular
cell, and collectively (i.e., across all cells) constitute the interaction between A and B, which often
is represented as A× B. Interactions are discussed in more detail in section 7.4.1.

The main effects are defined as

αj = µj. − µ.. (2)
βk = µ.k − µ.. (3)
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where µj. is the marginal mean in row j, µ.k is the marginal mean in column k, and µ.. is the population
grand mean (i.e., the mean of the row and column marginal means). There is one coefficient for each
row and column, and the effects are constrained so that they sum to zero:

a∑
j=1

αj = 0 (4)

b∑
k=1

βk = 0 (5)

(6)

The marginal row and column means are defined as

µj. =
b∑

k=1

µjk/b (7)

µ.k =
a∑

j=1

µjk/a (8)

which are estimated from our sample as

Ȳj. =
b∑

k=1

Ȳjk/b (9)

Ȳ.k =
a∑

j=1

Ȳjk/a (10)

For balanced designs, the formulae for marginal means can be rewritten as

Ȳj. =

(
b∑

k=1

n∑
i=1

Yijk

)
/nb (11)

Ȳ.k =

(
a∑

j=1

n∑
i=1

Yijk

)
/na (12)

Note that the marginal row means are the means calculated from all the scores in each row. Similarly,
the column marginal means are the means obtained from all of the scores in column. Hence, the row
marginal means ignore the column effects, and the column marginal means ignore the row effects.

The interaction terms are defined as

(αβ)jk = µjk − (µ.. + αj + βk) (13)

which represents the difference between the cell mean, µjk, and the sum of the grand mean (µ..)
and the row and column main effects. There is one interaction coefficient for each cell. Finally, the
interaction terms in each row and each column sum to zero:

a∑
j=1

(αβ)jk = 0 for each value of k (14)

b∑
k=1

(αβ)jk = 0 for each value of j (15)
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The least squares estimates of the coefficients are

αj = Ȳj. − Ȳ..

βk = Ȳ.k − Ȳ..

(αβ)jk = Ȳjk − (Ȳ.. + (Ȳj. − Ȳ..) + (Ȳ.k − Ȳ..))

= Ȳjk − Ȳj. − Ȳ.k + Ȳ..

The main effects have (a− 1) and (b− 1) degrees of freedom, the interaction has (a− 1)× (b− 1)
degrees of freedom, and the model in Equation 1 has 1+(a−1)+(b−1)+(a−1)(b−1) parameters.

7.1.1 simple interpretation of linear model

If one cuts through the mathematical notation, the model defined by Equation 1 has a very simple
interpretation. In our discussion of the linear model for one-way designs, we noted that the sum of
the intercept and group effects constituted a predicted score for individual i in group j (i.e., Ŷij). We
can extend this idea to our two-way factorial design:

Yijk = Ŷijk + ϵijk (16)

where Ŷijk is the predicted score. Equation 16 says that the score of individual i in cell jk is the sum
of a predicted score and an error (or residual) term. Now, the predicted score is defined as the sum
of the effects in the model:

Ŷijk = µ+ αj + βk + (αβ)jk

It turns out that the sum of the effects equals the mean of the scores in cell ij. In other words,
Ŷijk = Ȳij. Ȳij is an estimate of µij, so the model can be re-written as

Yijk = Ŷijk + ϵijk = µij + ϵijk

So, Equation 1 is equivalent to saying that the observed score is equal to the sum of the cell mean
and an error term, but it describes the cell mean as a sum of three separate effects.

7.2 main effect of A

Generally, the linear model in Equation 1 is used to evaluate three null hypotheses corresponding to
the two main effects and the A× B interaction. The null hypothesis for the main effect of A is

α1 = α2 = · · · = αa = 0 (17)

which is equivalent to
Ȳ1. = Ȳ2. = · · · = Ȳj. (18)

A significant main effect of A means that the row marginal means — i.e., the average of scores within
a row and across all levels of B — are not all equal

Your book points out that the sum of squares for factor A, or SSA, can be obtained by calculating
the difference between SSResidual obtained with the restricted model

Yijk = µ+ βk + (αβ)jk + ϵijk (19)
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to SSResidual obtained with the full model (i.e. Equation 1). The model in Equation 19 includes the
A×B interaction but not the main effect of A, and therefore violates the principle of marginality.1
One undesirable feature of such models is that SSA depends crucially on the definition of α. Our
definition of an effect is given by Equation 2, but other definitions are possible. For example, we
could define effect αj as the difference between the marginal mean of row j and the marginal row
mean of a baseline group (e.g., j = 1), giving αj = Ȳj − Ȳ1. This definition of an effect, which
is sometimes called treatment coding, or reference-cell coding, is entirely reasonable. Ideally, we
would not want our results to depend on arbitrary definitions of an effect. Unfortunately, in some
situations, the SSA derived from a comparison of Equations 1 and 19 does depend on our definition
of α. This is one reason why some statisticians argue strongly against the use of models that violate
the marginality principle (Venables and Ripley, 2002). In any case, it is important that you realize
that comparison of Equations 1 and 19 yields SSA only when α’s are defined as in Equation 2.

Are there other model comparisons that can be used to evaluate the null hypothesis in Equation
17? The answer is, yes. For example we can compare the fits provided by the models

Yijk = µ+ ϵijk (20)
Yijk = µ+ αj + ϵijk (21)

Alternatively, we can compare the following two models

Yijk = µ+ βk + ϵijk (22)
Yijk = µ+ αj + βk + ϵijk (23)

Notice that both comparisons involve models that differ only in the presence or absence of α coeffi-
cients, and so therefore should provide estimates of SSA. In fact, comparisons of models 1 and 19,
20 and 21, and 22 and 23 yield identical values for SSA provided that there are equal n per
group and we use sum-to-zero coding.

7.2.1 calculating F

The null hypothesis (Equation 17) is evaluated by comparing SSA to sum of squared residuals
(SSResiduals) for the full model (i.e., Eq. 1). It can be shown that

SSA = ER − EF =
a∑

j=1

n∑
i=1

α2
j (24)

The sum of squared residuals is

SSResiduals = EF =
a∑

j=1

b∑
k=1

n∑
i=1

(Yijk − Ȳjk)
2 (25)

Finally, the F test for the main effect of A is

FA =
SSA/(a− 1)

SSResiduals/(ab(n− 1))
(26)

with numerator and denominator degrees of freedom of (a− 1) and ab(n− 1), respectively.
1In a quadratic model that contains linear (x) and quadratic (x2) terms, the linear term is said to be marginal to

the quadratic term. In the case of factors, a main effect, A, is said to be marginal to interactions that contain it (e.g.,
A×B, A×B×C, etc.). According to the principle of marginality, if a model contains a higher-order term (e.g., AB),
then it must also contain the terms marginal to it (e.g., A and B).
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7.3 main effect of B

The null hypothesis for the main effect of B is

β.1 = β2. = · · · = β.b = 0 (27)

which is equivalent to
Ȳ.1 = Ȳ.2 = · · · = Ȳ.b = 0 (28)

A significant main effect of B means that the column marginal means — i.e., the average of scores
within a column and across all levels of A — are not all equal

The null hypothesis can be evaluated by comparing the sum of squared residuals from the full
model (i.e., Equation 1) to the sum of squared residuals for the restricted model

Yijk = µ+ αj + (αβ)jk + ϵijk (29)

Alternatively, we could compare

Yijk = µ+ ϵijk (30)
Yijk = µ+ βk + ϵijk (31)

or

Yijk = µ+ αj + ϵijk (32)
Yijk = µ+ αj + βk + ϵijk (33)

All of the comments made about the various comparisons that can be done to calculate SSA also
apply to calculations of SSB. It can be shown that

SSB =
b∑

k=1

n∑
i=1

β2
k (34)

The F test for the main effect of B is

FB =
SSB/(b− 1)

SSResidual/(ab(n− 1))
(35)

with numerator and denominator degrees of freedom of (b− 1) and ab(n− 1), respectively.

7.4 A× B interaction
The null hypothesis for the AB interaction is

(αβ)11 = (αβ)12 = · · · = (αβ)ab = 0 (36)

A significant A×B interaction means that the at least one cell mean, Ȳjk, differs from the predicted
value of µ+ αj + βk.

The significance of the interaction is evaluated by comparing Equation 1 to

Yijk = µ+ αj + βk + ϵijk (37)
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SSAB is given by

SSAB =
a∑

j=1

b∑
k=1

n∑
i=1

(αβ)2jk (38)

The F test for the AB interaction is

FAB =
SSAB/((a− 1)(b− 1))

SSResidual/(ab(n− 1))
(39)

with numerator and denominator degrees of freedom of (a− 1)(b− 1) and ab(n− 1), respectively.

7.4.1 interpreting interactions

The linear model in Equation 1 is equivalent to

Yijk = µij + ϵijk (40)

and that
µij = µ+ αj + βk + (αβ)jk (41)

Notice that Equation 41 implies that the interaction term, (αβ)jk is the difference between the mean
of cell jk and µ + αj + βk. In other words, the interaction term is the difference between
the cell mean and the predictions of a model that includes only the intercept and main
effects.

An interaction is depicted graphically in Figure 1, which shows the average scores for four groups
in a 2x2 factorial experiment. There is a main effect of A: on average, scores are higher in A2 than
A1. There is a main effect of B: on average, scores are higher in groups that receive treatment B1

than in groups that received treatment B2. Notice, however, that the difference between B1 and
B2 is smaller in the two groups that received treatment A1 than in the two groups that received
treatment A2:

Ȳ11 − Ȳ12 < Ȳ21 − Ȳ22

This inequality is represented graphically as a deviation from parallelism. A significant interaction
means that the two lines representing how scores vary with treatment A — one line for subjects
receiving treatment B1 and another for subjects receiving treatment B2 — are not parallel.

After looking at Figure 1, you might be tempted to conclude that the A× B interaction means
that the effect of A was significant for subjects receiving treatment B1 but not for subjects receiving
treatment B2. Alternatively, you might conclude that the effect of B is significant only in subjects who
received treatment A1, but not in subjects who received treatment B2. Such conclusions would
be premature and (possibly) incorrect. A significant interaction only means that Ȳ11 − Ȳ12 ̸=
Ȳ21 − Ȳ22, or (equivalently) that Ȳ12 − Ȳ22 ̸= Ȳ11 − Ȳ21. Further tests are necessary to determine if,
for example, A is or is not significant in subjects who received treatments B1 or B2.

A significant A×B interaction means that the effect of A depends on the level of B, and/or that
the effect of B depends on the level of A. In this situation – when the effect of one variable depends
on the level of the other variable – it often does not make sense to talk about, or further analyze,
the main effects of A and B.

7.5 familywise Type I error rates
Testing for main effects of A and B and an A×B interaction will inflate the experiment-wise Type
I error rate. Nevertheless, standard practice is to not correct for these multiple tests.
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Figure 1: Illustration of an A× B interaction.
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7.6 an example
In this section I will illustrate how to analyze data collected in an experiment that used a balanced
factorial design. There are two factors, A and B, and each factor has two levels. The dependent
variable is denoted by y. Finally, there are 6 scores per cell. Here is how I initialized R and created
the fake data:

options(contrasts=c("contr.sum","contr.poly"))
a<-rep(c(-1,-1,1,1),each=6)
b<-rep(c(-1,1,-1,1),each=6)
ab<-rep(c(-1,1,1,-1),each=6)
y<-10+2*a+1*b+0.5*ab
set.seed(123456);
nz<-rnorm(y)
y<-y+nz;
af<-factor(a,labels=c("a1","a2"),ordered=F)
bf<-factor(b,labels=c("b1","b2"),ordered=F)
myData <- data.frame(y,af,bf)
names(myData) <- c("y","A","B")

As was the case for a one-way ANOVA, data from factorial designs can be analyzed with the lm()
or aov() commands. However, the formula that defines the linear model is slightly more complicated
that the one used to analyze data collected with one-way designs. In this factorial experiment, the
linear model is defined with the the formula y ∼ 1+A+B+A : B, where 1 represents the intercept,
A and B represent the main effects, and A:B is the A x B interaction. The formula can be interpreted
as saying that y is modeled as the sum of an intercept term, a main effect of A, a main effect of B,
and an A x B interaction. Here, I use the lm() and anova() commands to do the analysis and print
the summary table:

lm.full.model <- lm(y ~ 1 + A + B + A:B, data=myData)
anova(lm.full.model)

The output is listed in Table 1. In R, the ANOVA table shows sequential sums-of-squares. So SSA

is derived from a comparison between models 20 and 21, SSB comes from a comparison of models
21 and 23, and SSAB comes from a comparison of models 23 and 1.

Df Sum Sq Mean Sq F value Pr(>F)
A 1 94.25 94.25 84.59 0.0000
B 1 23.21 23.21 20.83 0.0002
A:B 1 4.63 4.63 4.15 0.0550
Residuals 20 22.28 1.11

Table 1: ANOVA table for full model.

Normally, the anova table for the full model is all you need. However, I want to show you that the
terms in the full model really do come from a comparison of different reduced models. For example,
we can compute SSA by doing a direct comparison of models 20 and 21:

8



Bennett, PJ PSYCH 710 Chapter 7

lm.01 <- lm(y ~ 1, data=myData)
lm.02.a <- lm(y ~ 1 + A, data=myData)
anova(lm.01, lm.02.a)

## Analysis of Variance Table
##
## Model 1: y ~ 1
## Model 2: y ~ 1 + A
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 23 144.4
## 2 22 50.1 1 94.2 41.4 1.8e-06 ∗∗∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

Note that the difference between the SSResidual for the two models is the same as SSA for the
full model. Next, we compare models 22 and 23. Again, the change in SSResidual is the same as SSA

from the full model.

lm.02.b <- lm(y ~ 1 + B, data=myData)
lm.03 <- lm(y ~ 1 + A + B, data=myData)
anova(lm.02.b, lm.03)

## Analysis of Variance Table
##
## Model 1: y ~ 1 + B
## Model 2: y ~ 1 + A + B
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 22 121.2
## 2 21 26.9 1 94.2 73.5 2.7e-08 ∗∗∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

And, finally, we calculate SSA using Equation 24:

row.means <- with(myData,tapply(y, A, mean))
grand.mean <- mean(row.means)
alphas <- row.means - grand.mean
row.n <- with(myData,tapply(y, A, length))
levels(myData$A)

## [1] "a1" "a2"

a.levels <- 2
(SS.a <- sum((alphas^2) * row.n))

## [1] 94.25

All of these methods yield the same value for SSA. Likewise, the values of SSB and SSAB can
be calculated in several different ways. Trust me.
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7.7 R and marginality
In the previous section, I did not calculate SSA by comparing models 1 and 19. Let’s do so here:

lm.04 <- lm(y ~ 1 + B + A:B,data=myData)
anova(lm.04, lm.full.model)

## Analysis of Variance Table
##
## Model 1: y ~ 1 + B + A:B
## Model 2: y ~ 1 + A + B + A:B
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 20 22.3
## 2 20 22.3 0 3.55e-15

Notice that the results do not look like the ones obtained in the previous section. Why not? If
you examine the anova table carefully you will see that the residual degrees of freedom equals 20 in
both models. This result is surprising because we removed the A main effect in the reduced model,
so the residuals degrees of freedom should be greater in that model. The problem here is that R
does not look kindly upon models that violate the marginality principle, and so the effects of A
have been incorporated surreptitiously into the reduced model. In fact, the command anova(lm.04)
would show that the degrees of freedom for A and SSA have been added to the values for the A:B
interaction.

anova(lm.04)

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## B 1 23.2 23.2 20.8 0.00019 ∗∗∗
## B:A 2 98.9 49.4 44.4 4.4e-08 ∗∗∗
## Residuals 20 22.3 1.1
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

Furthermore, a comparison of the effects for A and the A×B interaction calculated in the full model

dummy.coef(lm.full.model)

## Full coefficients are
##
## (Intercept): 10.47
## A: a1 a2
## -1.982 1.982
## B: b1 b2
## -0.9835 0.9835
## A:B: a1:b1 a2:b1 a1:b2 a2:b2
## -0.439 0.439 0.439 -0.439

10



Bennett, PJ PSYCH 710 Chapter 7

are added together to form the A× B interaction effects in the reduced model

dummy.coef(lm.04)

## Full coefficients are
##
## (Intercept): 10.47
## B: b1 b2
## -0.9835 0.9835
## B:A: b1:a1 b2:a1 b1:a2 b2:a2
## -2.421 -1.543 2.421 1.543

The bottom line is that R intentionally makes it difficult for you to construct and compare models
that violate the marginality principle.

7.8 measures of association strength & effect size
We are considering a factorial experiment in which the factors are fixed (i.e., all of the factors about
which inferences are to be drawn are included in the experiment). In this case, the appropriate
(Kirk, 1995) measure of association strength is partial omega squared (ω2

partial). ω2
partial expresses

the variance of each treatment effect relative to the sum of the treatment effect variance and error
variance. Note that “error” refers to the error calculated from the full model: it is the unexplained
variance. Hence, ω2

A,partial expresses the variance among α’s relative to the sum of the error variance
and the α variance, and it ignores the variation in the dependent variable that is due to the effects
of B or A× B. Here are the definitions of ω2

partial in terms of the treatment effects:

ω2
A,partial =

∑a
j=1(α

2
j/a)

σ2
e +

∑a
j=1(α

2
j/a)

ω2
B,partial =

∑b
k=1(β

2
k/b)

σ2
e +

∑b
k=1(β

2
k/b)

ω2
AB,partial =

∑a
j=1

∑b
k=1

[
(αβ)2jk/(ab)

]
σ2
e +

∑a
j=1

∑b
k=1

[
(αβ)2jk/(ab)

]

Usually it is easier to calculate ω2
partial using the values listed in the ANOVA table for the full model.

Here is how ω2
partial is defined in terms of SStreatment and MSResiduals

ω2
A,partial =

SSA − dfAMSResiduals

SSA + (N − dfA)MSResiduals

ω2
B,partial =

SSB − dfBMSResiduals

SSB + (N − dfB)MSResiduals

ω2
AB,partial =

SSAB − dfABMSResiduals

SSAB + (N − dfAB)MSResiduals

Here is how ω2
partial is defined in terms of F values:

11



Bennett, PJ PSYCH 710 Chapter 7

ω2
A,partial =

dfA(FA − 1)

dfA(FA − 1) +N

ω2
B,partial =

dfB(FB − 1)

dfB(FB − 1) +N

ω2
AB,partial =

dfAB(FAB − 1)

dfAB(FAB − 1) +N

If ω2
partial < 0, then it is set to 0.

For the data shown in Table 1, calculating ω2
partial from F ’s yields

(omega.a <- (1 * (84.59 - 1))/(1 * (84.59 - 1) + 24))

## [1] 0.7769

(omega.b <- (1 * (20.83 - 1))/(1 * (20.83 - 1) + 24))

## [1] 0.4524

(omega.ab <- (1 * (4.15 - 1))/(1 * (4.15 - 1) + 24))

## [1] 0.116

According to Cohen’s 1988 guidelines,

ω2
partial = 0.010 is a small association

ω2
partial = 0.059 is a medium association

ω2
partial ≥ 0.138 is a large association

Partial omega squared can be used to calculate Cohen’s measure of effect size, f

ftreatment =

√
ω2
partial

1− ω2
partial

(42)

According to Cohen, f ’s of 0.1, 0.25, and 0.4 represent small, medium, and large effect sizes, respec-
tively.

7.8.1 effect size & association strength using effectsize

Measures of effect size and association strength can be calculated easily using commands in the
effectsize package. Careful examination of the following code will show that the values returned
by cohens_f do not follow Eq 42. The reason for the apparent error is that cohens_f calculates
effect size using η2, not ω2. My reading of the literature is that it is more common to use ω2.
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library(effectsize)
cohens_f(lm.full.model) # uses eta-squared, not omega-squared

## # Effect Size for ANOVA (Type I)
##
## Parameter | Cohen 's f (partial) | 90% CI
## ----------------------------------------------
## A | 2.06 | [1.39, 2.69]
## B | 1.02 | [0.56, 1.46]
## A:B | 0.46 | [0.00, 0.84]

eta_squared(lm.full.model)

## # Effect Size for ANOVA (Type I)
##
## Parameter | Eta2 (partial) | 90% CI
## -----------------------------------------
## A | 0.81 | [0.66, 0.88]
## B | 0.51 | [0.24, 0.68]
## A:B | 0.17 | [0.00, 0.41]

omega_squared(lm.full.model)

## # Effect Size for ANOVA (Type I)
##
## Parameter | Omega2 (partial) | 90% CI
## -------------------------------------------
## A | 0.78 | [0.61, 0.86]
## B | 0.45 | [0.18, 0.64]
## A:B | 0.12 | [0.00, 0.35]

7.9 power
In this section I will show you how to calculate power using the pwr package for R. If you have not
yet installed the package on your computer, do so now using the following command:

install.packages("pwr")

After installing the package, you must load it into memory with the command library(pwr)
command. Note that you only need to use this command once per R session. Now we can use
pwr.f2.test to calculate the power for any F test. Suppose we have a two-factor design: factors A
and B have three and two levels, respectively. Also, let’s assume that the effect sizes for the main
effects of A and B are 0.1 (i.e., small) and 0.25 (i.e., medium), respectively. Finally, we assume
that we have six subjects per group, and therefore that the degrees of freedom for MSresiduals in our
ANOVA will be 3× 2× (6 − 1) = 30. The following commands calculates the power of the test for
a main effect of A when α = .05:
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library(pwr)
pwr.f2.test(u=3-1,v=30,f2=(0.1^2),sig.level=.05)

##
## Multiple regression power calculation
##
## u = 2
## v = 30
## f2 = 0.01
## sig.level = 0.05
## power = 0.07319

And here is the power of the test for a main effect of B:

pwr.f2.test(u=2-1,v=30,f2=(0.25^2),sig.level=.05)

##
## Multiple regression power calculation
##
## u = 1
## v = 30
## f2 = 0.0625
## sig.level = 0.05
## power = 0.2777

Note that u and v correspond to the degrees of freedom in the numerator and denominator, respec-
tively, and f2 is effect size squared (i.e., Cohen’s f 2). The results of pwr.f2.test indicated that
power is quite low for the tests of both main effects. pwr.f2.test also can be used to estimate the
number of subjects that we would need to attain a power that was at least 0.8:

pwr.f2.test(u=3-1,f2=(0.1^2),sig.level=.05,power=.8)

##
## Multiple regression power calculation
##
## u = 2
## v = 963.5
## f2 = 0.01
## sig.level = 0.05
## power = 0.8

pwr.f2.test(u=2-1,f2=(0.25^2),sig.level=.05,power=.8)

##
## Multiple regression power calculation
##
## u = 1
## v = 125.5
## f2 = 0.0625
## sig.level = 0.05
## power = 0.8
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To attain a power of 0.8 for our main effect of A, we would need a 963 degrees of freedom in the
denominator of our F test, which means we would need 1 + [963/(3× 2)] = 162 subjects per cell in
our 3 × 2 design. To attain the same power for B, we would need 22 subjects per cell. Of course,
we cannot satisfy both of these requirements simultaneously, so we would need approximately 162
subjects per cell to attain a power of at least 0.8 for both tests of main effects:

pwr.f2.test(u=3-1,v=(3*2*(162-1)),f2=(0.1^2),sig.level=.05)

##
## Multiple regression power calculation
##
## u = 2
## v = 966
## f2 = 0.01
## sig.level = 0.05
## power = 0.8011

pwr.f2.test(u=2-1,v=(3*2*(162-1)),f2=(0.25^2),sig.level=.05)

##
## Multiple regression power calculation
##
## u = 1
## v = 966
## f2 = 0.0625
## sig.level = 0.05
## power = 1

Obviously, it would be very difficult, if not impossible, to conduct such a study. Hopefully this
example will highlight why you should think about the power of your experiments prior to doing
them.

We’ll conclude calculating power for a 3× 4 factorial design (i.e. 3 levels on factor A and 4 levels
on factor B). If the effect size for A is f = 0.25, how many subjects do we need to attain a power of
0.8? The function pwr.f2.test can be used to calculate the degrees of freedom that we need in the
denominator of our F test:

pwr.f2.test(u=3-1,f2=(0.25^2),sig.level=.05,power=.8)

##
## Multiple regression power calculation
##
## u = 2
## v = 154.2
## f2 = 0.0625
## sig.level = 0.05
## power = 0.8

The denominator degrees of freedom is given by the formula

df residuals = a× b× (n− 1)
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so we would need n = 14 subjects per cell to achieve df residuals = 154 and a power of 0.8.

pwr.f2.test(u=3-1,v=3*4*(14-1),f2=(0.25^2),sig.level=.05)

##
## Multiple regression power calculation
##
## u = 2
## v = 156
## f2 = 0.0625
## sig.level = 0.05
## power = 0.8049

Bio.drugX Bio.drugY Bio.drugZ None.drugX None.drugY None.drugZ
1 170 186 180 173 189 202
2 175 194 187 194 194 228
3 165 201 199 217 217 190
4 180 215 170 206 206 206
5 160 219 204 199 199 224

Table 2: Data from biofeedback experiment.

7.10 linear contrasts
A significant main effect implies that the marginal means are not all equal, but it does not tell us
how the means differ. To get a clearer picture of the differences among means, we often will do
one or more linear contrasts. In this section I will illustrate the calculation and evaluation of linear
contrasts using the data from Table 7.5 in Maxwell and Delaney (2004, see Table 2). The data come
from a 3(drug) x 2(biofeedback) factorial experiment. Five subjects were randomly assigned to each
of the six experimental conditions. The results of a 2 (biofeedback) × 3 (drug) ANOVA are presented
in Table 3. The main effects of drug and biofeedback were significant, as was the drug × biofeedback
interaction.
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Df Sum Sq Mean Sq F value Pr(>F)
drug 2.00 1882.07 941.03 5.21 0.01
biofeedback 1.00 1904.03 1904.03 10.54 0.00
drug:biofeedback 2.00 1248.07 624.03 3.46 0.05
Residuals 24.00 4334.80 180.62

Table 3: ANOVA for biofeedback experiment.

Imagine that I want to compare drugs x and y to each other. If the levels of drug are x, y, and z,
then I would perform a linear contrast with contrast weights c1 = [−1, 1, 0]. The following example
shows how to perform such a contrast using aov():

# levels(mw75$drug) # "drugX""drugY""drugZ"
c1 <- c(-1,1,0)
myC <- cbind(c1)
contrasts(mw75$drug) <- myC
mw.aov.02<-aov(score~drug*biofeedback,data=mw75)
summary(mw.aov.02,split=list(drug=list(1)))

## Df Sum Sq Mean Sq F value Pr(>F)
## drug 2 1882 941 5.21 0.0132 ∗
## drug: C1 1 1638 1638 9.07 0.0060 ∗∗
## biofeedback 1 1904 1904 10.54 0.0034 ∗∗
## drug:biofeedback 2 1248 624 3.46 0.0480 ∗
## drug:biofeedback: C1 1 1110 1110 6.15 0.0206 ∗
## Residuals 24 4335 181
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The contrast was significant, so we reject the null hypothesis of no difference between the marginal
means of drugs x and y. Notice that the output also shows how the value of the linear contrast
varies with, or depends upon, the level of biofeedback: In other words, the output lists the contrast
× biofeedback interaction, which in this case is significant, F (1, 24) = 6.15, p = .02. Next, let’s
compute the contrast directly from the group means and information in the omnibus ANOVA table:

(drug.means <- with(mw75,tapply(score,drug,mean)) )

## drugX drugY drugZ
## 183.9 202.0 199.0

with(mw75,tapply(score,list(drug,biofeedback),length))

## Bio None
## drugX 5 5
## drugY 5 5
## drugZ 5 5
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n <- 5
a <- 2
MS.resid <- 181
df.resid <- 24
psi <- sum(c1*drug.means)
( SScontrast <- (n*a)*(psi^2)/ (sum(c1^2)) )

## [1] 1638

(F <- SScontrast/MS.resid)

## [1] 9.05

( p.value <- 1-pf(F,df1=1,df2=df.resid) )

## [1] 0.006084

Note that the calculation of SScontrast uses n× a = 10, rather than n = 5, because we are considering
marginal means, not cell means, and there are 10 subjects who receive each drug. Also note that the
denominator degrees of freedom for the p-value equals the residuals degrees of freedom. Finally, let’s
consider the case where we wanted to compare the different drugs with two orthogonal contrasts:

# levels(mw75$drug) # "drugX""drugY""drugZ"
c1 <- c(-1,1,0)
c2 <- c(-1,-1,2)
myC <- cbind(c1,c2)
contrasts(mw75$drug) <- myC
mw.aov.02<-aov(score~drug*biofeedback,data=mw75)
summary(mw.aov.02,split=list(drug=list(1,2)))

## Df Sum Sq Mean Sq F value Pr(>F)
## drug 2 1882 941 5.21 0.0132 ∗
## drug: C1 1 1638 1638 9.07 0.0060 ∗∗
## drug: C2 1 244 244 1.35 0.2565
## biofeedback 1 1904 1904 10.54 0.0034 ∗∗
## drug:biofeedback 2 1248 624 3.46 0.0480 ∗
## drug:biofeedback: C1 1 1110 1110 6.15 0.0206 ∗
## drug:biofeedback: C2 1 138 138 0.76 0.3907
## Residuals 24 4335 181
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

We can see that the second contrast, which compares the marginal mean of drug z to the mean of
the other two drugs, is not significant (and does not interact with biofeedback).
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7.10.1 linear contrasts with emmeans

Linear contrasts can be performed easily with the R package, emmeans. The following block of code
shows how to analyze the main effect of drug with contrasts c1 and c2, which were defined in the
previous section.

library(emmeans)
mw.em <- emmeans(mw.aov.02,specs="drug")
con <- contrast(mw.em, method=list(c1,c2))
summary(con,adjust="none")

## contrast estimate SE df t.ratio p.value
## c(-1, 1, 0) 18.1 6.01 24 3.011 0.0060
## c(-1, -1, 2) 12.1 10.41 24 1.162 0.2565
##
## Results are averaged over the levels of: biofeedback

The t test results are equivalent to the F tests in the previous section. However, this analysis ignores
any potential interaction between drug and biofeedback. The next block of code performs the
contrasts separately at each level of biofeedback. The values of each contrast in each biofeedback
are listed in the estimate column. Each t test evaluates the null hypothesis that the value of
estimate equals zero. Only contrast c1 in the biofeedback condition is significant.

mw.em2 <- emmeans(mw.aov.02,specs="drug",by="biofeedback")
contrast(mw.em2,method=list(drug=list(c1,c2)), by="biofeedback")

## biofeedback = Bio:
## contrast estimate SE df t.ratio p.value
## drug.c(-1, 1, 0) 33.0 8.5 24 3.882 0.0007
## drug.c(-1, -1, 2) 3.0 14.7 24 0.204 0.8402
##
## biofeedback = None:
## contrast estimate SE df t.ratio p.value
## drug.c(-1, 1, 0) 3.2 8.5 24 0.376 0.7099
## drug.c(-1, -1, 2) 21.2 14.7 24 1.440 0.1628

The values of the contrasts differ across the biofeedback conditions. For example, the values
of contrast c1 were 33 and 3.2 in the two biofeedback conditions, a difference of 29.8. However,
that information is insufficient to determine if the contrasts differ significantly across biofeedback
conditions. That inference requires us to perform a significance test on the difference itself, an
operation that we perform in the next block of code.

contrast(mw.em2,
interaction=list(drug=list(c1,c2),biofeedback=list(c(1,-1)) ),
by=NULL)

## drug_custom biofeedback_custom estimate SE df t.ratio p.value
## c(-1, 1, 0) c(1, -1) 29.8 12.0 24 2.479 0.0206
## c(-1, -1, 2) c(1, -1) -18.2 20.8 24 -0.874 0.3907
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The first line in the output evaluates the null hypothesis that the difference between the values of
contrast c1 calculated in the two biofeedback conditions, 33− 3.2 = 29.8, is zero. According to our
analysis, this difference is significant, so the difference between drugs x and y differs significantly
between the two biofeedback conditions. The second line in the output evaluates the null hypothesis
that the difference between contrast c2 in the two conditions, 3− 21.2 = −18.2, is zero. The t test
indicates that the difference is not significant, so we do not reject the hypothesis that contrast c2
did not differ across biofeedback conditions.

7.10.2 Tukey HSD

In some situations we want to evaluate all pairwise comparisons among marginal means. In such
cases, a Tukey HSD task is appropriate. Using the which option in the TukeyHSD command allows
you to specify which set of marginal means should be tested:

TukeyHSD(mw.aov.02,which="drug")

## Tukey multiple comparisons of means
## 95% family -wise confidence level
##
## Fit: aov(formula = score ~ drug ∗ biofeedback , data = mw75)
##
## $drug
## diff lwr upr p adj
## drugY -drugX 18.1 3.09063 33.11 0.0160
## drugZ -drugX 15.1 0.09063 30.11 0.0484
## drugZ -drugY -3.0 -18.00937 12.01 0.8724

TukeyHSD(mw.aov.02,which="biofeedback")

## Tukey multiple comparisons of means
## 95% family -wise confidence level
##
## Fit: aov(formula = score ~ drug ∗ biofeedback , data = mw75)
##
## $biofeedback
## diff lwr upr p adj
## None-Bio 15.93 5.805 26.06 0.0034

7.11 simple main effects
A significant interaction means that the effect of A depends on the level of B or, equivalently, that
the effect of B depends on the level of A. Hence, a significant A × B interaction means that tests
of main effects may be give a very misleading picture of the effects of A and B. Usually, when the
A × B interaction is significant we should not go on to test for main effects. Instead, we should
determine if the effect of one variable (e.g., A) is significant within each individual level of the other
variable (e.g., B1, B2, · · · , Bk). Tests for the significance of one variable within the level of another
variable are known as simple main effects.
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7.11.1 an example

I will give an example of how to compute simple main effects with the data shown in Table 7.11 in
your textbook, which is saved as a data file on the CD that came with your textbook. That file does
not contain variable names, so R provides default names V1, V2, and V3. I’m going to read the data
file, change the variable names to something more useful, and then convert them to factors. If you
do not have the textbook’s CD, you can get download the data file from the web:

# mw11 <- read.table(file = "chapter_7_table_11.dat")
file_path <- "http://pnb.mcmaster.ca/bennett/psy710/datasets/mw/chapter_7_table_11.dat"
mw11 <- read.table(file=url(file_path ))
names(mw11)

## [1] "V1" "V2" "V3"

names(mw11) <- c("group", "task", "score")
names(mw11)

## [1] "group" "task" "score"

sapply(mw11,class)

## group task score
## "integer" "integer" "integer"

The group and task variables are integer variables because the different levels were defined with
numbers rather than letters. I want my ANOVA to treat group and task as factors, so I will create
two new variables gf and tf:

mw11$gf <- factor(mw11$group,
labels = c("amnesic", "huntingtons", "control"),
ordered = FALSE)

mw11$tf <- factor(mw11$task,
labels = c("grammar", "classification", "recognition"),
ordered = FALSE)

names(mw11)

## [1] "group" "task" "score" "gf" "tf"

sapply(mw11,class)

## group task score gf tf
## "integer" "integer" "integer" "factor" "factor"

I use the lm() and anova() commands to do the analysis and print the summary table. In this
factorial experiment, the linear model is defined with the formula

score ∼ 1 + gf + tf + gf : tf
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where 1 represents the intercept, gf and tf represent the group and task main effects, and gf:tf is
the group x task interaction. The formula can be interpreted as saying that score is modeled as the
sum of an intercept term, a group main effect, a task main effect, and a group x task interaction.
Here is the ANOVA:

mw11.lm.01 <- lm(score ~ 1+ gf + tf + gf:tf, data = mw11)
anova(mw11.lm.01)

## Analysis of Variance Table
##
## Response: score
## Df Sum Sq Mean Sq F value Pr(>F)
## gf 2 5250 2625 16.64 7.6e-06 ∗∗∗
## tf 2 5250 2625 16.64 7.6e-06 ∗∗∗
## gf:tf 4 5000 1250 7.92 0.00011 ∗∗∗
## Residuals 36 5680 158
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

MS.w <- 157.8
df.w <- 36

The interaction between group and task is significant. I save the MSResdiuals, or MSWithin, and the
degrees of freedom because we will need them later. The command interaction.plot can be used
to get a better sense of what the interaction means. The following code chunk creates Figure 2.

interaction.plot(x.factor=mw11$gf,
trace.factor=mw11$tf,
response=mw11$score,
trace.label="task")

It looks as though the effect of task may be significant for the group of Huntington’s patients, but
not the other groups. I will evaluate this idea by testing the effect of task at each level of group.
(N.B. I am not saying that this test is the most interesting one. I am simply going to use it to
illustrate how to calculate simple main effects).

The key part of the analysis is to extract the data from each level of group using R’s subset
command. Here is an example of how to use the command:

# subset(mw11, gf == "control")
# subset(mw11, tf == "classification")
subset(mw11, tf == "classification" & gf == "control")

## group task score gf tf
## 36 3 2 92 control classification
## 37 3 2 65 control classification
## 38 3 2 86 control classification
## 39 3 2 67 control classification
## 40 3 2 90 control classification

Next we construct the appropriate linear models and display the anova tables for the effect of
task for each group:
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Figure 2: Interaction plot.

lm.task.hunt <- lm(score ~ 1 + tf, data = subset(mw11, gf == "huntingtons"))
lm.task.amnesic <- lm(score ~ 1 + tf, data = subset(mw11, gf == "amnesic"))
lm.task.control <- lm(score ~ 1 + tf, data = subset(mw11, gf == "control"))

Finally, we print the anova table for each model, extract SStask, and then compute F and p values
using MSWithin and dfWithin from our original analysis. Next I evaluate the simple main effect of
task for the Huntington’s group. Notice how I recalculate F :

anova(lm.task.hunt)

## Analysis of Variance Table
##
## Response: score
## Df Sum Sq Mean Sq F value Pr(>F)
## tf 2 9250 4625 29.4 2.4e-05 ∗∗∗
## Residuals 12 1890 157
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

(F.task.hunt <- 4625/MS.w)

## [1] 29.31

(p.task.hunt <- 1 - pf(F.task.hunt, df1 = 2, df2 = df.w))

## [1] 2.792e-08
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The simple main effect is significant. We could now proceed to do contrasts or pairwise comparisons
among the three tasks to see which ones differ. Below, I compute pairwise differences using Tukey’s
HSD method.

You might think that performing a Tukey HSD test on a simple main effect is done by passing
the aov object to TukeyHSD:

aov.task.hunt <- aov(score ~ tf, data = subset(mw11, gf == "huntingtons"))
TukeyHSD(aov.task.hunt)

## Tukey multiple comparisons of means
## 95% family -wise confidence level
##
## Fit: aov(formula = score ~ tf, data = subset(mw11, gf == "huntingtons"))
##
## $tf
## diff lwr upr p adj
## classification -grammar 5 -16.18 26.18 0.8068
## recognition -grammar 55 33.82 76.18 0.0000
## recognition -classification 50 28.82 71.18 0.0001

However, this test is not optimal because it is based on an error term calculated only from a portion
of the data rather than all of the data. The following code shows how to calculate F from the means
of the three tasks in the huntingtons groups:

with(subset(mw11,gf=="huntingtons"),tapply(score,tf,length))

## grammar classification recognition
## 5 5 5

n <- 5
b <- 3
(tf.means.hunt<-with(subset(mw11,gf=="huntingtons"),tapply(score,tf,mean)) )

## grammar classification recognition
## 40 45 95

pw1<-c(-1,1,0)
pw2<-c(-1,0,1)
pw3<-c(0,-1,1)
psi.pw1 <- sum(tf.means.hunt * pw1)
psi.pw2 <- sum(tf.means.hunt * pw2)
psi.pw3 <- sum(tf.means.hunt * pw3)
SS.pw1 <- n*b*(psi.pw1^2) / sum(pw1^2)
SS.pw2 <- n*b*(psi.pw2^2) / sum(pw2^2)
SS.pw3 <- n*b*(psi.pw3^2) / sum(pw3^2)
MS.w

## [1] 157.8
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(F.pw1 <- SS.pw1/MS.w)

## [1] 1.188

(F.pw2 <- SS.pw2/MS.w)

## [1] 143.8

(F.pw3 <- SS.pw3/MS.w)

## [1] 118.8

Now that we have our F scores, we need to compare them to a critical F calculated using formula that
is appropriate for the HSD test. In R, you can calculate this critical F using the qtukey command:

alpha.fw <- .05
df.w

## [1] 36

(F.tukey.critical <- ( qtukey(1-alpha.fw,nmeans=b,df=df.w)^2) / 2 )

## [1] 5.975

Note that αFW = .05, that the number of means equals the number of different tasks, and that the
degrees of freedom equals the df for the error term that was used to calculate the F ’s. Comparing
the observed F ’s to the critical F indicates that performance in the recognition task differed from
performance in the other two tasks, but that performance in the grammar and classification tasks
did not differ from each other. Here is the simple main effect of task for the amnesic group:

anova(lm.task.amnesic)

## Analysis of Variance Table
##
## Response: score
## Df Sum Sq Mean Sq F value Pr(>F)
## tf 2 250 125 0.79 0.48
## Residuals 12 1896 158

(F.task.amnesic <- 125/MS.w)

## [1] 0.7921

(p.task.amnesic <- 1 - pf(F.task.amnesic, df1 = 2, df2 = df.w))

## [1] 0.4606
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The simple main effect of task among amnesic subjects is not significant. Finally, we evaluate the
simple main effect of task for the control group. The simple main effect of task among control
subjects is not significant:

anova(lm.task.control)

## Analysis of Variance Table
##
## Response: score
## Df Sum Sq Mean Sq F value Pr(>F)
## tf 2 750 375 2.38 0.14
## Residuals 12 1894 158

(F.task.control <- 375/MS.w)

## [1] 2.376

(p.task.control <- 1 - pf(F.task.control, df1 = 2, df2 = df.w))

## [1] 0.1073

In summary, our analysis suggests that task has a significant effect on performance among Hunt-
ington’s patients but not among subjects in the other groups. Moreover, the effect of task in Hunt-
ington’s patients appears to reflect the fact that recognition scores are significantly higher than scores
on the grammar and classification tasks .

7.11.2 simple main effects using emmeans

The analyses performed in the previous sections can be done simply and efficiently with commands
in the R package emmeans. The following code illustrates how to calculate the simple main effect of
task in each group:

library(emmeans)
mw11.em <- emmeans(mw11.lm.01,specs=~tf|gf) # note the formula!
joint_tests(mw11.em,by="gf") # simple main effect of task for each group

## gf = amnesic:
## model term df1 df2 F.ratio p.value
## tf 2 36 0.792 0.4606
##
## gf = huntingtons:
## model term df1 df2 F.ratio p.value
## tf 2 36 29.313 <.0001
##
## gf = control:
## model term df1 df2 F.ratio p.value
## tf 2 36 2.377 0.1073
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The joint_tests command shown above evaluates the null hypothesis that the two α’s correspond-
ing to the effects of task (at each level of gf) are zero. The simple main effect of task is significant
only in the huntingtons group. Next, we can evaluate differences among tasks within each group
using Tukey’s HSD.

library(emmeans)
pairs(mw11.em) # tukey adjustment used by default

## gf = amnesic:
## contrast estimate SE df t.ratio p.value
## grammar - classification -10 7.94 36 -1.259 0.4273
## grammar - recognition -5 7.94 36 -0.629 0.8050
## classification - recognition 5 7.94 36 0.629 0.8050
##
## gf = huntingtons:
## contrast estimate SE df t.ratio p.value
## grammar - classification -5 7.94 36 -0.629 0.8050
## grammar - recognition -55 7.94 36 -6.923 <.0001
## classification - recognition -50 7.94 36 -6.294 <.0001
##
## gf = control:
## contrast estimate SE df t.ratio p.value
## grammar - classification 0 7.94 36 0.000 1.0000
## grammar - recognition -15 7.94 36 -1.888 0.1567
## classification - recognition -15 7.94 36 -1.888 0.1567
##
## P value adjustment: tukey method for comparing a family of 3 estimates

In the huntingtons group, the recognition task differs significantly from the grammar and
classification task. Notice that each Tukey test has 36 degrees of freedom, which is the same
as the residuals degrees of freedom in our original ANOVA. Also, the value of SE equals the value
you get when the error term is based on MSresiduals in the original ANOVA. Thus, the comparisons
calculated by emmeans are using an error term that is calculated from all of the data rather than
subsets of the data.

7.11.3 Type I Error Rates

Analyzing the simple main effect of task required us to do three ANOVAs (one for each level of
group). Obviously, performing multiple tests of simple main effects will increase the familywise Type
I error rate. There is some disagreement on the issue of whether you should use the Bonferroni
method to control the Type I error rate. One point of view is that you should not do so because you
would examine simple main effects only if the omnibus interaction was significant. Another point
of view is that the familywise Type I error rate should be kept at the level used in the omnibus
ANOVA. In other words, if α = .05 was used to evaluate significant interaction and main effects,
then you should set αFW = .05 when you are analyzing simple main effects. In the example in the
preceding section, we would set the per-comparison alpha to αPC = .05/3 = .0167.

7.12 Unbalanced Data
So far our analyses of factorial experiments have assumed that the designs are balanced: they have
equal n in each combination of the experimental factors. There are occasions, however, when our

27



Bennett, PJ PSYCH 710 Chapter 7

data are unbalanced. In the following sections we describe how unbalanced data complicate the
analysis of variance, and suggest ways of addressing these complications.

In the following sections, I assume that the full model for a two factor experiment is

Yijk = µ+ αi + βj + (αβ)ij + ϵijk (43)

and that
Σiαi = Σiβj = Σi(αβ)ij = 0 (44)

The sum-to-zero constraints in Equation 44 are especially important for interpreting Type III sums
of squares (Section 7.12.5).

7.12.1 An example

The following example is taken directly from Chapter 13 in Howell (2002).
An experiment was conducted to study the effect of alcohol on vigilance. Subjects were placed

in a driving simulator and told to avoid cars when they emerged suddenly from driveways, and
pedestrians who stepped suddenly into the street. Subjects were assigned randomly to two groups:
the no-alcohol group drank a non-alcoholic beverage before the driving test, whereas the alcohol
group drank an alcoholic beverage. The dependent measure was the number of errors each driver
made in one half-hour session. The experiment was conducted in two labs at universities in Michigan
and Arizona. The data are presented in Table 4. There are unequal numbers of subjects in each
cell of Table 4, so the data are unbalanced. Inspection of the cell means indicates that the results
were what you would expect: subjects in the alcoholic group made more errors than subjects in the
no-alcohol group. Furthermore, the cell means indicate that the pattern of results was, as expected,
the same for subjects tested in Michigan and Arizona.

Table 4: Data from drinking study.

no alcohol alcohol Row Means

Michigan

13 15 14
16 12
Ȳ11 =
14

18 20 22 19
21 23 17 18
22 20
Ȳ12 = 20

Ȳ1. = 18

Arizona
13 15 18 14
10 12 16 17
15 10 14
Ȳ21 = 14

24 25 17
16 18
Ȳ22 =
20

Ȳ2. = 15.9

Column Means Ȳ.1 = 14 Ȳ.2 = 20

So, what’s the problem? Well, if you look at the row means, it appears that subjects from
Michigan made more errors than subjects from Arizona: Despite the fact that the cell means in
the two rows are exactly the same, the marginal row means differ. Why? Because 10 out of the 15
subjects from Michigan were in the alcohol condition, whereas 11 out of the 16 subjects from Arizona
were in the no-alcohol condition. In other words, the effect of alcohol is masquerading as an effect
of state. This mixing up of row and column effects is a general property of unbalanced factorial
designs: the row, column, and interaction effects are no longer orthogonal to each other.
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The fact that the row, column and interaction effects are no longer orthogonal greatly complicates
the analysis of variance. To see why, consider the following two linear models:

score ∼ 1 + alcohol + state + alcohol : state (45)
score ∼ 1 + state + alcohol + state : alcohol (46)

The ANOVA tables produced by R for Models 45 and 46 are presented in Table 5. Although the
models differ only in the order of terms, the sums of squares assigned by the models to the main
effects differ significantly.

Df Sum Sq Mean Sq F value Pr(>F)
state 1 34.96 34.96 5.13 0.0318
alcohol 1 243.75 243.75 35.77 0.0000
state:alcohol 1 0.00 0.00 0.00 1.0000
Residuals 27 184.00 6.81

Df Sum Sq Mean Sq F value Pr(>F)
alcohol 1 278.71 278.71 40.90 0.0000
state 1 0.00 0.00 0.00 1.0000
alcohol:state 1 0.00 0.00 0.00 1.0000
Residuals 27 184.00 6.81

Table 5: ANOVA tables for Model 1 (top) and Model 2 (bottom).

7.12.2 Proportional Cell Frequencies

Before I continue to discuss the problems associated with analyzing unbalanced data, I want to
describe a case where unbalanced data are not hard to analyze. Suppose we had 36 subjects from
Michigan, with 24 in the alcohol condition and 12 in the no-alcohol condition. Also, let’s suppose
that there were 24 subjects from Arizona, with 16 in the alcohol condition and 8 in the no-alcohol
condition. In this case, the ratio of subjects in the alcohol and no-alcohol conditions is 2:1 at both
levels of the other variable, state. If the proportion of cases in one variable is the same at all levels
of the other variables, then the design exhibits proportionality and can be analyzed as though the
data were balanced. So everything in the following conditions applies to situations where the data
are unbalanced and cell sizes are not proportional.

7.12.3 Type I (Sequential) Sums of Squares

R prints so-called Type I, or sequential, sums of squares, which are computed by comparing a series
of nested models. The sums of squares in the top of Table 5 are derived by comparing the following
four nested models:

1.1) score ∼ 1

1.2) score ∼ 1 + state

1.3) score ∼ 1 + state + alcohol

1.4) score ∼ 1 + state + alcohol + state : alcohol
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SSstate is derived by comparing models 1.1 and 1.2, SSalcohol is derived by comparing models 1.2 and
1.3, and SSstate:alcohol is derived by comparing models 1.3 and 1.4. In the first step of this sequential
comparison process, SSstate represents all of the variation in the dependent variable that is associated
with state. In the second step, SSalcohol represents the variation in the dependent variable that is
associated with alcohol after removing the variation assigned to state. The third step assigns all
of the variation in the dependent variable that is associated with the state X alcohol interaction
after removing variation assigned to the two main effects.

The sums of squares in the bottom of Table 5 are derived by comparing the following four nested
models:

2.1) score ∼ 1

2.2) score ∼ 1 + alcohol

2.3) score ∼ 1 + alcohol + state

2.4) score ∼ 1 + alcohol + state + alcohol : state

SSalcohol is derived by comparing models 2.1 and 2.2, SSstate is derived by comparing models 2.2 and
2.3, and SSalcohol :score is derived by comparing models 2.3 and 2.4. In this case, SSalcohol represents
all of the variation in the dependent variable that is associated with alcohol, but SSstate represents
the variation that is associated with state after removing the variation assigned to alcohol. The
last step is the same as before: SSalcohol :state represents the variation in the dependent variable that
is associated with the state X alcohol interaction after removing the variation that assigned to the
two main effects.

In Section 7.12, I noted that the fact that the design is unbalanced means that the main effects of
state and alcohol are not orthogonal. The lack of orthogonality means that some of the variation
in the dependent variable that is associated with state is also associated with alcohol; and some of
the variation in the dependent variable that is associated with alcohol is also associated with state.
This state of affairs is often summarized by saying that state and alcohol account for “overlapping”
portions of the variation of the dependent variable. In such cases, the variation assigned to each
variable depends on the order in which the assignment takes place. When we compare models 1.2
and 1.1, some variation in the dependent variable is assigned to SSstate . However, our example was
constructed in such a way that the “effect” of state actually was due entirely to the effect of alcohol.
So, after comparing models 2.2 and 2.1, and assigning alcohol-associated variation in the dependent
variable to SSalocohol , there is nothing left to assign to SSstate .

One last comment. This discussion should make it clear that each main effect has two values for
Type I sum of squares: one is calculated by comparing models that ignore the other effects (e.g.,
comparing models 1.1 and 1.2, or 2.1 and 2.2) and another that is calculated by comparing models
that control for the other main effect (e.g., comparing 1.2 and 1.3, or 2.2 and 2.3). Both values are
Type I sums of squares, so you need to be clear which value you are referring to when you discuss the
“Type I sum of squares for factor A”. In your textbook, Type I sums of squares for A are calculated
while ignoring both the other main effect, B, and the A× B interaction.

7.12.4 Type II Sums of Squares

Type I sums of squares are derived from sequential comparisons of nested models that can result
in an asymmetry between the sums of squares for the two main effects. In the top of Table 5, for
example, SSstate was calculated while ignoring the effects of alcohol, whereas SSalcohol was calculated
after controlling for the effects of state. In the bottom of Table 5, on the other hand SSalcohol was
calculated while ignoring the effects of state, whereas SSstate was calculated after controlling for

30



Bennett, PJ PSYCH 710 Chapter 7

the effects of alcohol. An alternative would be to calculate the sum of squares for each main effect
after controlling for the other main effect. For example, we could estimate SSalcohol by comparing
the residuals in the following nested models

score ∼ 1 + state

score ∼ 1 + state + alcohol

and estimate SSstate by comparing these nested models

score ∼ 1 + alcohol

score ∼ 1 + alcohol + state

These are Type II sums of squares: They are the sum of squares calculated after controlling for the
other main effect but ignoring the interaction.

More generally, the Type II sum of squares for an effect is calculated by comparing nested models
that lack all interactions that include that effect. For example, suppose an experiment contained
factors A, B, and C. The Type II sum of squares for C is obtained by comparing the nested models

score ∼ 1 + A+B + A : B

score ∼ 1 + A+B + A : B + C

Note how the models do not contain any interactions that include C (i.e., A:C, B:C, and A:B:C).
According to this definition, the Type I and Type II sum of squares for the State X Alcohol interaction
are equivalent.

The second line in each part of Table 5 lists the sum of squares for one main effect after controlling
for the other main effect (but ignoring the interaction). These are the Type II sums of squares for
state and alcohol. The Type II sum of squares for the interaction is equivalent to the Type I sum
of squares for the interaction, and is listed in the third line of both ANOVA tables.

7.12.5 Type III Sums of Squares

Finally, we consider the sums of squares for an effect that are calculated after accounting for all other
effects in the model. SSstate is calculated by comparing

score ∼ 1 + alcohol + alcohol : state

score ∼ 1 + alcohol + alcohol : state + state

SSalcohol is calculated by comparing

score ∼ 1 + state + alcohol : state

score ∼ 1 + state + alcohol : state + alcohol

and SSstate:alcohol is calculated by comparing

score ∼ 1 + state + alcohol

score ∼ 1 + state + alcohol + alcohol : state

These are Type III sums of squares. They are sums of squares that are obtained by comparing nested
models that control for all other effects. One advantage of Type III sums of squares is that they are
not dependent on the order in which the factors are specified in the linear model.
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Note that the Type III sum of squares for the interaction is the same as the Type I and Type II
sums of squares. In general, the Type I, II and III sums of squares for the highest-order interaction
in the experimental design will be the same. In a 2-factorial design, the Type II sum of squares for
each main effect control for the other main effect but ignore the interaction. Type III sum of squares
control for the other main effect and the interaction. Therefore, Type II and III sums of squares for
the main effects will be the same when SSinteraction is zero.

7.12.6 principle of marginality

One might think that Type III sums of squares could be computed in R by comparing the two aov
models:

aov.full <- aov(y ~ 1 + state + alcohol + state:alcohol, data=myData)
aov.reduced <- aov(y ~ 1 + state + state:alcohol, data=myData)
anova(aov.reduced, aov.full)

Although this sequence of commands looks correct, it will unfortunately not produce the Type III
sums of squares for alcohol. The reason for this failure is that the formula in aov.reduced violates
the principle of marginality, which holds that a model that contains an A:B interaction must
also contain main effects of A and B. Some (most?) statisticians argue that, in general, such models
should not be used. Here is one reason why: Suppose we construct a linear model that relates a
dependent variable to a covariate

y ∼ 1 + αx+ βx2

and we find that α does not differ significantly from zero. We might be tempted to simplify our
model by dropping x:

y ∼ 1 + βx2

This model also violates the principle of marginality because it contains the higher-order term, x2,
but not the lower-order term x. What’s the problem? Well, suppose we change the units of x by
adding and/or multiplying it by a constant: x′ = ax + b. This type of linear transformation of x
should not change the results of our statistical analyses, right? Well, if the model obeys the principle
of marginality, then a linear transformation of x does not change the results in any significant way:
the sum-of-squares associated with x and x2 remain the same. However, when the model violates the
principle of marginality, then a linear transformation of x does change the sum-of-squares associated
with x2. And we are not just talking about tiny changes: the effects of linearly transforming x can
be huge.

Consider another example. We have used the sum-to-zero constraint (Equation 44) when defining
the effects in the linear model in Equation 43. It is possible, however, to define effects in other ways.
For example, we could designate one condition in our experimental design as the baseline in which
all of the effects are zero, and the effects for all other conditions would be defined relative to this
baseline. Using this definition, it is possible that all of the effects are greater than zero, so the sum-
to-zero constraint does not apply. Nevertheless, this definition – which is known as a treatment
definition of an effect, and actually is the default definition used by R – is perfectly reasonable. The
results of our ANOVA should not depend on which definition we use: we should get the same results
if we use the sum-to-zero constraint or define the effects relative to a baseline condition. And we do
get the same results – the sums of squares assigned to the various factors in our model remain the
same, so long as the model obeys the principle of marginality. When the model violates the principle
of marginality, then the results obtained by an ANOVA will depend on the (seemingly arbitrary)
decision of how we define the effects in our model.
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All of this is to say that R tries hard to enforce the principle of marginality. Therefore, the code
listed at the start of this section, which includes a model that violates the principle of marginality, will
not yield the Type III sum of squares for alcohol. The reason for the failure is that R surreptitiously
introduces the alcohol term into the reduced model, and so the difference in SSresidual in the two
models will be zero. Think of it this way: R it trying to save you from yourself. Nevertheless, Type
III sums of squares can be calculated easily in R if you know the secret handshake.

7.12.7 calculating Type III sums of squares in R

The command drop1(aovModel,. ∼ .,test="F") calculates the change in SSresiduals that is caused
by removing each term in aovModel, one at a time, and evaluates each change with an F test. (The
second part of the command, . ∼ ., tells R that it should drop all terms in the model, one at a
time.) Notice that this procedure is exactly how Type III sums of squares are computed, so drop1
calculates Type III sums of squares.

The following code shows how to compute the Type III sum of squares for our example:

howell<-read.csv("howell.csv")
aov.01<-aov(score~1+state+alcohol+state:alcohol,data= howell)
drop1(aov.01,.~.,test="F")

## Single term deletions
##
## Model:
## score ~ 1 + state + alcohol + state:alcohol
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 184 63.2
## state 1 0 184 61.2 0.0 1
## alcohol 1 244 428 87.4 35.8 2.2e-06 ∗∗∗
## state:alcohol 1 0 184 61.2 0.0 1
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

Notice that the results are not dependent on the order of the terms in the model (to within
rounding error):

aov.02<-aov(score~1+alcohol+state+state:alcohol,data=howell)
drop1(aov.02,.~.,test="F")

## Single term deletions
##
## Model:
## score ~ 1 + alcohol + state + state:alcohol
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 184 63.2
## alcohol 1 244 428 87.4 35.8 2.2e-06 ∗∗∗
## state 1 0 184 61.2 0.0 1
## alcohol:state 1 0 184 61.2 0.0 1
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

33



Bennett, PJ PSYCH 710 Chapter 7

7.12.8 linking everything to hypotheses about means

The previous sections described Type I, II, and III sums of squares in terms of comparisons among
nested models. Normally, however, we express experimental hypotheses in terms of group means: we
want our analyses of main effects, for example, to evaluate null hypotheses of no difference among
row and column means. What hypotheses about means are being evaluated when we compute Type
I, II, and III sums of squares?

7.12.9 the interaction term

In the case of the A:B interaction, the answer is simple: Type I, II, and III sums of squares are all
equal and all test the same hypothesis, namely that every cell mean is simply the sum of the intercept
and two main effects:

Ȳjk = µ+ αj + βk (47)
or, in other words, that (αβ)jk = 0 for all j and k.

7.12.10 Type I: weighted means

Type I sums of squares evaluate null hypotheses about weighted row and column marginal means. A
weighted mean takes into account the different n in each group. So, for an arow × bcolumn design, the
weighted row and column marginal means are

Ȳr.(W ) =
Σb

k=1nkȲrk

(n1 + n2 · · ·+ nb)
(48)

Ȳ.c(W ) =
Σa

j=1njȲjc

(n1 + n2 · · ·+ na)
(49)

Type I sums of squares evaluate the null hypotheses that the weighted marginal row and column
means are equal:

Ȳ1.(W ) = Ȳ2.(W ) = · · · = Ȳa.(W ) (50)
Ȳ.1(W ) = Ȳ.2(W ) = · · · = Ȳ.b(W ) (51)

Are these hypotheses interesting? Usually, no, because differences in weighted means depend on the
cell n’s. However, in some cases it is important to incorporate information about cell n into our
analyses (see Howell and McConaughy (1982) for an example), and in those cases testing hypotheses
about weighted marginal means is appropriate.

7.12.11 Type II: crazy!

Type II sums of squares can be used to test the following crazy null hypothesis:

Σb
k=1

(
njk − (n2

jk/n.k

)
µjk = Σj ̸=j′Σ (njknj′k/n.k)µj′k (52)

where j = 1, 2, 3, · · · , (a − 1). Nobody knows what this hypothesis means. So, Type II sums of
squares generally do not test anything that you or I can understand. An exception to this general
rule is when when SSinteraction ≈ 0. I expand on this point in see Section 7.12.12.
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7.12.12 Type III: unweighted means

Type III sums of squares evaluate null hypotheses about unweighted marginal means. In an arow ×
bcolumn design, the unweighted mean for row r, Ȳr.(U), is simply the mean of the b cell means in row
r, and the unweighted mean for column c, Ȳ.c(U), is the mean of the a cell means in column c:

Ȳr.(U) =
Σb

j=1Ȳrj

b
(53)

Ȳ.c(U) =
Σa

i=1Ȳic

a
(54)

Unweighted marginal means do not take into account the differences in n within each cell.
Provided that the effects in the linear model satisfy the sum-to-zero constraint (as

in Equation 44), Type III sums of squares can be used to evaluate the null hypotheses that the
unweighted marginal row and column means are equal:

Ȳ1.(U) = Ȳ2.(U) = · · · = Ȳa.(U) (55)
Ȳ.1(U) = Ȳ.2(U) = · · · = Ȳ.b(U) (56)

I will say it again: Type III sums of squares can be used to test hypotheses about unweighted
marginal means provided that the effects satisfy the sum-to-zero constraint2. To illustrate this point,
I am going to use drop1 to calculate SSalcohol when we define an effect relative to a baseline condition:

options(contrasts=c("contr.treatment","contr.poly")) # treatment/baseline definition
aov.03 <- aov(score~alcohol+state+alcohol:state,data=howell)
drop1(aov.03,.~.,test="F")

## Single term deletions
##
## Model:
## score ~ alcohol + state + alcohol:state
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 184 63.2
## alcohol 1 124 308 77.2 18.2 0.00022 ∗∗∗
## state 1 0 184 61.2 0.0 1.00000
## alcohol:state 1 0 184 61.2 0.0 1.00000
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

options(contrasts=c("contr.sum","contr.poly")) # reset

Now SSalcohol = 123.75, which is considerably less than the value of 184 calculated in Section
7.12.7.

2Actually, the requirement is that the contrasts used to define the effects are orthogonal in the row-basis of the
model matrix. This means that several definitions of effects can be used to test hypotheses about marginal means
using Type III sums of squares, but the only one considered here is the sum-to-zero definition.
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7.12.13 When SSinteraction ≈ 0

Type II and III sums of squares are equal when SSinteraction ≈ 0. In that situation, Type II sums
of squares can be used to evaluate null hypotheses about marginal unweighted means. Moreover, in
this case Type II sums of squares will provide a more sensitive test of the null hypothesis because
the degrees of freedom associated with the interaction effects will be incorporated into dfResiduals .
Therefore, some researchers recommend that you first evaluate the interaction term and if it is not
significant – with p > 0.20 or p > 0.25 – proceed to use Type II sums of squares to evaluate hypotheses
about marginal unweighted means. Others recommend against this procedure, arguing instead that
the interaction term should remain in the model even if it is not significant, and that you should use
Type III tests to evaluate the main effects (Faraway, 2005).

7.12.14 A Numerical Example

To illustrate the ideas described in the previous section, I will analyze the data shown in Table
7.23 (page 339) in your textbook. The data are from an experiment that evaluates the effectiveness
of three types of therapy on alleviating depression. The factors are type of therapy (cognitive-
behavioural, Rogerian, and Assertiveness Training) and severity of depression (mild, moderate,
and severe)3. The dependent variable is the score on the depression scale of the MMPI.

The data are stored in the file chapter_7_table_23.dat on the CD that came with your text-
book. I copied the file to my working directory and then read it into R with the following command:

# mwtable23<-read.table("chapter_7_table_23.dat")
file_path <- "http://pnb.mcmaster.ca/bennett/psy710/datasets/mw/chapter_7_table_23.dat"
mwtable23 <- read.table(file=url(file_path))
names(mwtable23)<-c("therapy","depression","mmpi")
mwtable23$therapy<-factor(mwtable23$therapy,labels=c("cognitive","rogerian","assertive") )
mwtable23$depression<-factor(mwtable23$depression,labels=c("mild","moderate","severe"))
class(mwtable23$therapy)

## [1] "factor"

class(mwtable23$depression)

## [1] "factor"

In the next block of code, I first check that the data are unbalanced. Then I construct an
aov object and use drop1 to estimate the Type III sums of squares for the two main effects and
interaction:

with(mwtable23,tapply(mmpi,list(therapy,depression),length) )

## mild moderate severe
## cognitive 3 5 7
## rogerian 5 6 4
## assertive 5 4 6

3Subjects are not assigned to severity of depression, so depression is a blocking variable, not a true experimental
factor. Nevertheless, we will use a fixed-effects model to analyze these data.
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options(contrasts=c("contr.sum","contr.poly") ) # use sum-to-zero coding
mw23.aov.01<-aov(mmpi~therapy+depression+therapy:depression,data=mwtable23)
drop1(mw23.aov.01,.~.,test="F")

## Single term deletions
##
## Model:
## mmpi ~ therapy + depression + therapy:depression
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 1005 158
## therapy 2 205 1210 162 3.67 0.036 ∗
## depression 2 1181 2187 189 21.15 8.4e-07 ∗∗∗
## therapy:depression 4 14 1020 150 0.13 0.972
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The first thing to note is that the interaction is not significant, so it makes sense to examine
the main effects. The Type III sums of squares for therapy and depression are 205 and 1181,
respectively. Both are significant, so we reject the null hypotheses that the unweighted marginal
means (of mmpi scores) do not vary across types of therapy or level of depression. (N.B. This
second main effect is not interesting.)

In this example, SStherapy :depression was very small and the p value was very large (p = 0.971). In
other words, if interaction effects do exist then they are likely to be very small. Therefore, we might
consider evaluating the main effects using Type II sums of squares. The following commands list
two ANOVA tables for models that contain two main effects but no interaction. The second line in
each table is the sum of squares for that main effect after controlling for the other main effect while
ignoring the interaction (which we think is approximately zero). In other words, those lines contain
the Type II sum of squares and, because the interaction is assumed to be zero, test the same null
hypotheses as the Type III sums of squares:

mw23.aov.02<-aov(mmpi~therapy+depression,data=mwtable23)
summary(mw23.aov.02)

## Df Sum Sq Mean Sq F value Pr(>F)
## therapy 2 101 51 1.98 0.15
## depression 2 1253 627 24.58 1.1e-07 ∗∗∗
## Residuals 40 1020 25
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

mw23.aov.03<-aov(mmpi~depression+therapy,data=mwtable23)
summary(mw23.aov.03)

## Df Sum Sq Mean Sq F value Pr(>F)
## depression 2 1116 558 21.89 3.8e-07 ∗∗∗
## therapy 2 238 119 4.68 0.015 ∗
## Residuals 40 1020 25
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
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The Type II sums of squares for therapy and depression are 238.48 and 1253.19, respectively.
Both are significant, so we reject the null hypothesis of no difference between marginal row means
and marginal column means. Again, it is important to remember that this null hypothesis is begin
evaluated because the interaction is assumed – with good reason, in this case – to be zero. If the
interaction was not zero, then Type II sums of squares would be evaluating the crazy null hypothesis
listed in Section 7.12.11.

The Type I sums of squares for therapy and depression – the versions calculated by ignoring
all other effects, which are listed in the first lines of the two ANOVA tables – are 101.11 and 1115.82,
respectively. These sums of squares can be used to evaluate the null hypotheses that the weighted
marginal means do not vary across levels of depression or types of therapy. The effect of therapy
is not significant (F (2, 40) = 1.98, p = 0.15), so we do not reject the null hypothesis of no difference
among weighted marginal means. The effect of depression is significant (though this finding is not
interesting).

7.12.15 Using Anova in the car package

In this section I describe how to use the Anova() command (N.B., note the capital A) to compute
Type II and III sums of squares. Note that you do not need to use Anova(); drop1(), along with
the standard anova() or summary() commands, are adequate. However, Anova() has some features
that will be useful for analyzing within-subjects designs, which will be covered in later chapters.
Therefore, I thought it might be useful to introduce the command here.

The Anova() command is part of the car package, which is a suite of commands and data
files for R written and maintained by Professor John Fox. You can read about the car package at
http://cran.r-project.org/web/packages/car/index.html. To use car, you need to install the
software on your computer. From within R, type the following command:

install.packages(pkgs="car")

This command installs car on your computer; you only have to use it once (plus whenever you
periodically update your software). The command library("car") loads car into memory: you
have to use it once per session. You can read about the contents of car by typing ?car at R’s
command prompt. You can learn more about Anova by typing ?Anova at the command prompt.
Again, take note of the capital A in Anova.

Finally, we can calculate Type II and III sums of squares. Type III sums of squares only make
sense if we are using sum-to-zero coding of our effects. Therefore, I am going to make sure the coding
is correct by resetting the coding option.

library("car") # load car (just once per session)
options(contrasts=c("contr.sum","contr.poly")) # just in case
Anova(mw23.aov.01,type="II")

## Anova Table (Type II tests)
##
## Response: mmpi
## Sum Sq Df F value Pr(>F)
## therapy 238 2 4.27 0.022 ∗
## depression 1253 2 22.44 4.7e-07 ∗∗∗
## therapy:depression 14 4 0.13 0.972
## Residuals 1005 36
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## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

Anova(mw23.aov.01,type="III")

## Anova Table (Type III tests)
##
## Response: mmpi
## Sum Sq Df F value Pr(>F)
## (Intercept) 121174 1 4338.72 < 2e-16 ∗∗∗
## therapy 205 2 3.67 0.036 ∗
## depression 1181 2 21.15 8.4e-07 ∗∗∗
## therapy:depression 14 4 0.13 0.972
## Residuals 1005 36
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
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