
Bennett, PJ PSYCH 710 Chapter 6

Notes on Maxwell & Delaney
PSYCH 710

October 14, 2021

6 Chapter 6 - Trend Analysis
Previously, we discussed how to use linear contrasts, or comparisons, to test specific hypotheses about
differences among group means. Those discussions implicitly assumed that the grouping variable, or
factor, was qualitative, in the sense that the levels of the factor were not ordered. In such cases, the
levels of the factor are said to form a nominal scale. In some situations, however, the levels of the
factor clearly are ordered: the ages of children in a developmental study, for example, or the amount
of time given to study lists of words in a memory experiment. It makes sense to say that one level
is greater than another, and therefore these factors are quantitative rather than qualitative. In such
cases, we often are interested in particular kinds of comparisons across groups. For example, we may
want to know if performance in a memory test is a linear or nonlinear function of study time. As
we shall see, we can use linear comparisons to answer such questions. Using linear comparisons to
examine the effects of a quantitative factor is often referred to as trend analysis, or the method of
orthogonal polynomials. The mathematical methods for computing these contrasts are exactly
the same as those used to compare the levels of qualitative factor.

6.1 rose data
6.1.1 omnibus test

We will use the data stored in the rose data frame to illustrate trend analysis. The following
commands set up R to use sum-to-zero coding for the effects (i.e., the α’s) associated with different
levels of factors, polynomial contrasts for ordered factors (more on this in a moment), and loads the
data:

options(contrasts=c("contr.sum","contr.poly") )
options(digits=4) # formats the output
load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/rose.Rdata") )

rose contains the integer variables age and score from a hypothetical score that recorded some
measure of cognitive performance in children who were 8, 9 , 10, 11, and 12 years of age. I am going
to create a grouping variable (i.e., a factor) from age, and then plot the mean score as a function of
age group in Figure 1.

rose$ageGroup <- factor(rose$age, labels = "g", ordered = FALSE)
y.means <- tapply(rose$score, rose$ageGroup, mean)
x.group <- sort(unique(rose$age))
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Figure 1: Rose data.

Just for fun, let’s compute the correlation between age and the mean:

cor(x.group, y.means)

## [1] 0.9829

The correlation is quite high and, together with the graph, suggests that there is an association
between score and age. Now we do an ANOVA using the aov() and summary() commands:

rose.aov.01 <- aov(score ~ ageGroup, data = rose)
summary(rose.aov.01)

## Df Sum Sq Mean Sq F value Pr(>F)
## ageGroup 4 456 113.9 1.67 0.17
## Residuals 45 3065 68.1

We get the same results if we use lm() and print the summary table with anova():

rose.lm.01 <- lm(score ~ ageGroup, data = rose)
anova(rose.lm.01)
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## Analysis of Variance Table
##
## Response: score
## Df Sum Sq Mean Sq F value Pr(>F)
## ageGroup 4 456 113.9 1.67 0.17
## Residuals 45 3065 68.1

Surprisingly, the effect of ageGroup is not statistically significant. What is going on here? The
problem is that the omnibus F test evaluates a very general question, namely whether there are
any differences across groups. However, the very high correlation, as well as the data in Figure 1,
suggest that there is a linear relation between score and ageGroup. What we need is a method for
testing for the presence of specific trends that may exist between score and ageGroup. This method
is called, not surprisingly, trend analysis.

6.1.2 ordered factors

Trend analysis involves nothing more than the calculation of linear contrasts, or comparisons, among
levels of a quantitative factor. In R, a quantitative factor is called an ordered factor: it is a
grouping variable that preserves the order among levels. Although linear contrasts can be used to
test for arbitrary differences across levels of an ordered factor, in trend analysis we are interested in
only a few possible patterns of differences, or trends, across the levels of an ordered factor. Several
trends are shown in Figure 2. Each plot in Figure 2 show the weights for a single trend “contrast”.
The weights are shown in the columns of the following matrix:

contr.poly(n = 5,scores=c(8,9,10,11,12))

## .L .Q .C ^4
## [1,] -0.6325 0.5345 -3.162e-01 0.1195
## [2,] -0.3162 -0.2673 6.325e-01 -0.4781
## [3,] 0.0000 -0.5345 -4.096e-16 0.7171
## [4,] 0.3162 -0.2673 -6.325e-01 -0.4781
## [5,] 0.6325 0.5345 3.162e-01 0.1195

These contrast weights shown in Figure 2 with the assumption that there are an equal number
of subjects in each group. A careful inspection of this matrix, and the plots in Figure 2, will
show that the trend contrasts form an orthogonal set. (Note that these values are not the same as
those listed in your textbook. For example, the book uses the following weights to test for a linear
trend across 5 groups: [-1.5, -0.5, 0.5, 1.5]. The difference in weights will not alter the results of F
tests, but it will alter the value of ψ for each comparison.)

To perform a trend analysis, we need to create an ordered factor for our rose data set:

rose$orderedAge <- factor(rose$age, labels = "a", ordered = TRUE)
class(rose$orderedAge)

## [1] "ordered" "factor"

class(rose$ageGroup)
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Figure 2: Linear, quadratic, cubic, and quartic trends.

## [1] "factor"

unique(rose$orderedAge)

## [1] a1 a2 a3 a4 a5
## Levels: a1 < a2 < a3 < a4 < a5

unique(rose$ageGroup)

## [1] g1 g2 g3 g4 g5
## Levels: g1 g2 g3 g4 g5

Note the difference in the levels for orderedAge and ageGroup.

6.1.3 trend analysis using aov

Now we simply do an ANOVA with our new ordered variable using aov:

rose.aov.02 <- aov(score ~ orderedAge, data = rose)
summary(rose.aov.02)

## Df Sum Sq Mean Sq F value Pr(>F)
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## orderedAge 4 456 113.9 1.67 0.17
## Residuals 45 3065 68.1

The results are exactly the same as the previous one. Why? Because the ANOVA table shows
the overall effect of group, which does not depend on the code used to represent the group variable.
In other words, the overall, omnibus F is exactly the same regardless of whether group is represented
as a factor or an ordered factor. The effect of using an ordered factor becomes apparent when
we partition SSorderedAge. Notice how the command split is used in the next command to break
SSorderedAge into four components. Why four components? Because there are five age groups, so
there are 5− 1 = 4 orthogonal trends.

summary(rose.aov.02, split = list(orderedAge = list(1, 2, 3, 4)))

## Df Sum Sq Mean Sq F value Pr(>F)
## orderedAge 4 456 114 1.67 0.173
## orderedAge: C1 1 440 440 6.46 0.015 ∗
## orderedAge: C2 1 9 9 0.13 0.720
## orderedAge: C3 1 6 6 0.08 0.776
## orderedAge: C4 1 1 1 0.02 0.901
## Residuals 45 3065 68
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

This table is not very informative, so I am going to give names to each component.

summary(rose.aov.02,
split = list(orderedAge = list(linear = 1, quadratic = 2,cubic = 3, quartic = 4)))

## Df Sum Sq Mean Sq F value Pr(>F)
## orderedAge 4 456 114 1.67 0.173
## orderedAge: linear 1 440 440 6.46 0.015 ∗
## orderedAge: quadratic 1 9 9 0.13 0.720
## orderedAge: cubic 1 6 6 0.08 0.776
## orderedAge: quartic 1 1 1 0.02 0.901
## Residuals 45 3065 68
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The table shows SScontrast, F , and p for each linear comparison. The first contrast is the linear trend,
the second is the quadratic trend, the third is the cubic trend, and the fourth contrast is the quartic
trend. We can see that the test for linear trend is significant, which means that we reject the null
hypothesis

−0.6325µ1 − 0.3162µ2 + 0µ3 + 0.3162µ4 + 0.6325µ5 = 0 (1)
Compare SSorderedAge to the sums of squares for each comparison. Because the trends are derived
from orthogonal contrasts, SSorderedAge = SSlinear + SSquadratic + SScubic + SSquartic. Also, because
each trend is a linear contrast, there is 1 df for each trend. Finally, because the trends are orthogonal,
Fomnibus = (1/4)(Flinear + Fquadratic + Fcubic + Fquartic).
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6.1.4 testing for significance of nonlinear trends

Sometimes we want to know if a the relationship between our independent and dependent variables is
or is not nonlinear, regardless of the form of the nonlinearity. This type of question can be addressed
by doing a single test on the grouped nonlinear trends. The following commands perform such an
analysis in R. Notice the 2:4 syntax used to specify that contrasts 2, 3, and 4 are combined.

summary(rose.aov.02, split = list(orderedAge = list(linear = 1, nonlinear = 2:4)))

## Df Sum Sq Mean Sq F value Pr(>F)
## orderedAge 4 456 114 1.67 0.173
## orderedAge: linear 1 440 440 6.46 0.015 ∗
## orderedAge: nonlinear 3 15 5 0.08 0.973
## Residuals 45 3065 68
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The results again indicate that the linear trend is significant. The test for nonlinearity is not signif-
icant. This test for nonlinearity can be thought of as an omnibus F test on the nonlinear trends.

In some situations we may be interested in evaluating the linear and quadratic trends and ignoring
any remaining nonlinear trends. This analysis can be done by listing the linear and quadratic trends
in the split command and grouping the remaining nonlinear trends:

summary(rose.aov.02, split = list(orderedAge = list(lin = 1, quad=2, other = 3:4)))

## Df Sum Sq Mean Sq F value Pr(>F)
## orderedAge 4 456 114 1.67 0.173
## orderedAge: lin 1 440 440 6.46 0.015 ∗
## orderedAge: quad 1 9 9 0.13 0.720
## orderedAge: other 2 7 3 0.05 0.953
## Residuals 45 3065 68
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

6.1.5 calculating ψ for each trend

Finally, it is a simple matter to list the value of ψ for each comparison:

coef(rose.aov.02)

## (Intercept) orderedAge.L orderedAge.Q orderedAge.C orderedAge^4
## 13.5240 6.6345 -0.9408 -0.7463 0.3251

confint(rose.aov.02) # confidence intervals

## 2.5 % 97.5 %
## (Intercept) 11.173 15.875
## orderedAge.L 1.378 11.891
## orderedAge.Q -6.197 4.316
## orderedAge.C -6.003 4.510
## orderedAge^4 -4.931 5.581
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6.1.6 interpretation of ψ values

What do these values of ψ mean? Each ψ can be turned into a regression weight, b:

b =
ψ̂∑a
j=1 c

2
j

(2)

where cj is the j-th weight in the linear contrast. These regression weights can be used to construct
a regression equation that expresses the observed scores in terms of a polynomial contrast weights

Yij = β0 + bLcLj + bQcQj + bCcCj + · · ·+ eij (3)
where B0 is the intercept, the b’s are regression weights, and the c’s are the contrast weights, and j
represents the level of the ordered factor. For example, cL1, cQ1, and cC1 represent the first weights
of the linear, quadratic, and cubic contrasts; cL2, cQ2, and cC2 represent the second weights of the
linear, quadratic, and cubic contrasts; and so on. This interpretation is valid provided the ordered
levels are equally spaced and there are equal numbers of subjects in each group.

In the present example, the values of the intercept and four ψ’s are 13.524, 6.6345, -0.9409, -0.7463,
and 0.3251. For the polynomial contrasts used by R, the sum of the squared weights is 1. Therefore,
the regression coefficients equal the values of the comparisons(bj = ψj = [6.6345,−0.9409,−0.7463, 0.3251]).
Combining the b’s with the values of the contrast weights (shown above) allows us to use Equation
3 to calculate the group means:

Ȳ1 = 13.524 + 6.6345(−0.6325)− 0.9408(0.5345)− 0.7463(−0.3162) + 0.3251(0.1195) = 9.10

Ȳ2 = 13.524 + 6.6345(−0.3162)− 0.9408(−0.2673)− 0.7463(0.6325) + 0.3251(−0.4781) = 11.05

Ȳ3 = 13.524 + 6.6345(0)− 0.9408(−0.5345)− 0.7463(0) + 0.3251(0.7171) = 14.26

Ȳ4 = 13.524 + 6.6345(0.3162)− 0.9408(−0.2673)− 0.7463(−0.6325) + 0.3251(−0.4781) = 16.19

Ȳ5 = 13.524 + 6.6345(0.6325)− 0.9408(0.5345)− 0.7463(0.3162) + 0.3251(0.1195) = 17.02

These values correspond exactly to the group means:

with(rose, tapply(score,orderedAge,mean) ) # calc group means

## a1 a2 a3 a4 a5
## 9.10 11.05 14.26 16.19 17.02

6.2 planned vs. post-hoc comparisons
I have been acting as though the previous analyses were planned comparisons. However, it certainly
is permissible to do post-hoc trend analyses. In such cases, you should use Scheffé’s method to
control familywise Type I errors. However, I think that we often do ourselves a disservice by not
doing planned trend analyses on ordered factors. Why? Because psychological theories rarely are
developed to the point where they predict a quantitative relation between independent and dependent
variables that includes anything higher than a quadratic component. In other words, it is unlikely
that a theory would have the form shown in Equation 3. It is more likely to find a theory that looks
like this
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Yij = β0 + αLXj + eij (4)
or this

Yij = β0 + αLXj + αQX
2
j + eij (5)

Sometimes the “theory” is implicit. For instance, if we are measuring some ability in children
in grades 1 through 5, we may strongly suspect that the ability increases from grades 1 through 4
and levels off. This expectation is equivalent to saying that we expect to find significant linear and
quadratic trends. In this case, it makes sense to test for linear and quadratic trends and ignore the
higher-order nonlinear trends. Such comparisons would be more powerful than an omnibus F test
and provide more direct tests of our hypothesis. Of course, I am not saying that you should always do
trend analyses on ordered factors. Instead, I am suggesting that you think about how your dependent
variable may be related to the levels of your grouping variable and then use an appropriate test to
evaluate your hypothesis.
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