
Bennett, PJ PSYCH 710 Chapter 4

Notes on Maxwell & Delaney
PSYCH 710

October 14, 2021

4 Chapter 4 - Individual Comparisons of Means
4.1 Omnibus vs. Focused Tests
For the one-way ANOVAs that we have been discussing so far, a significant F test means that we
reject the null hypothesis H0: α1 = α2 = · · · = αa = 0 in favor of the alternative hypothesis H1:
αj ̸= 0 (for at least one group, j). So, when a ≥ 3, a significant omnibus F test does not tell
us precisely how the group means differ from each other. To address this question, and make our
inferences more precise, we need to use more focused comparisons of the group means.

There is another reason for using focused comparisons. In a sense, the omnibus F test examines
all possible patterns of differences among the group means. The advantage of this test is obvious:
we don’t need to specify the pattern of effects in advance. However, there is a penalty to this general
approach, namely reduced power. As we shall see, asking a focused question can result in a statistical
test with much greater power than the omnibus F test.

The following example shows that a focused comparison among means can be significant even
when the omnibus F test is not significant.

set.seed(seed = 934)
y <- c(rnorm(n = 60, mean = 100, sd = 20), rnorm(n = 10,110, sd = 20))
g <- factor(rep(seq(1, 7, 1), each = 10), labels = "g", ordered = FALSE)

If you examine the line y <- c(rnorm(n=60,…,sd=20) ); carefully, you will see that it consists
of 60 random numbers drawn from a gaussian distribution with a mean of 100, and 10 random
numbers drawn from a gaussian distribution with a mean of 110. Our grouping variable, g, will be
used to group the y’s into 7 sets of 10 numbers each. Boxplots of the data are shown in Figure 1.

boxplot(y~g)

Now we conduct a standard ANOVA.

lm01 <- lm(y~g);
anova(lm01);
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Figure 1: Boxplots of y data for different groups, g.
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## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## g 6 3431 571.8 1.726 0.13
## Residuals 63 20873 331.3

Notice that the omnibus F test fails to find a significant difference among the groups. Next, we
compare group 7 to the other groups. Specifically, we ask whether the mean of group 7 differs from
the mean of the 6 other groups. To do this analysis, I first need to download some R commands:

source(url("http://pnb.mcmaster.ca/bennett/psy710/Rscripts/linear_contrast_v2.R"))

## [1] "loading function linear.comparison"

The source command loaded several commands that can be used to perform a linear comparison
among means in a one-way design. Next, I have to specify my contrast weights:

my.weights <- c(-1, -1, -1, -1, -1, -1, 6)

We will discuss the meaning of the contrast weights in the following section. Finally, I use the
linear.comparison command, which was loaded into R’s workspace by the previous source com-
mand, to perform the linear comparison:

my.contrast <- linear.comparison(y, g, c.weights = my.weights)

## [1] "computing linear comparisons assuming equal variances among groups"
## [1] "C 1: F=7.218, t=2.687, p=0.009, psi=100.218, CI=(-2.897,203.332), adj.CI=

(25.673,174.762)"

my.contrast[[1]]$F

## [1] 7.21771

my.contrast[[1]]$p.2tailed

## [1] 0.00921941

The F test for this linear contrast, or linear comparison, is significant, even though the omnibus
F test was not.

4.1.1 using standard R commands

In this section I will show you how to perform the linear comparison with R’s built-in commands
(i.e., without using the linear.comparison command). The first step is to inform R that I want to
perform a particular comparison among the various groups represented by the factor g:
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contrasts(g) <- my.weights

Next, I perform an ANOVA:

my.aov <- aov(y~g)

Finally, I display the ANOVA table in a way that splits the group effect into various pieces:

summary(my.aov, split=list(g=list(myContrast=1,others=2:6)))

The split syntax is complicated because it is a list of lists: It is used to inform R to split a list
of terms in the linear model (e.g., g) into lists of pieces. In this case, we’re telling R to split the
effects related to factor g into two pieces: the first piece corresponds to our linear contrast, and the
second piece is a combination of five other things that are not of interest. We will discuss what these
pieces mean in the following sections. For now, let’s examine the output of the summary command:

## Df Sum Sq Mean Sq F value Pr(>F)
## g 6 3431 572 1.73 0.1296
## g: myContrast 1 2391 2391 7.22 0.0092 ∗∗
## g: others 5 1039 208 0.63 0.6794
## Residuals 63 20873 331
## ---
## Signif. codes:
## 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

Notice that the F and p values listed in the ANOVA table are the same (to within rounding error)
as those provided by linear.comparison.

4.2 Complex Comparisons
The previous examples used a linear contrast to test the null hypothesis:

−1(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) + 6µ7 = 0

which is equivalent to the null hypotheses

6µ7 − 1(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) = 0

and, by multiplying both sides of the equation by 1
6
,

µ7 −
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) = 0

which is equivalent (finally), to

µ7 =
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) (1)
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This last form of the hypothesis is perhaps the easiest to interpret: the null hypothesis is that
the mean of group 7 does not differ from the mean of the other group means. We rejected that null
hypothesis to accept the alternative

µ7 ̸=
1

6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6)

The general form of a linear contrast is

H0 : c1µ1 + c2µ2 + · · ·+ caµa = Ψ = 0 (2)

where the weights of the linear contrast are constrained to sum to zero
a∑

j=1

cj = 0 (3)

and the estimation of the comparison, Ψ̂, is

Ψ̂ =
a∑

j=1

(cjȲj) (4)

In the example from the preceding section, Ψ̂ = 100.2.

my.contrast[[1]]$psi

## [1] 100.218

If there were four groups, and we wanted to compare group 3 to the mean of groups 1 and 2,
then we would use the following contrast

Ψ = (1)µ1 + (1)µ2 − 2µ3 + (0)µ4

and our coefficients would be c=(1, 1, -2, 0). If we wanted to compare group 1 to group 4, the
coefficients would be c=(1, 0, 0, -1). If we wanted to compare groups 1 and 2 to groups 3 and 4, the
coefficients would be c=(1, 1, -1, -1).

A linear contrast is evaluated using our standard F test, which in this case is equal to

F =
(Ψ2)/

∑a
j=1(c

2
j/nj)

MSW

(5)

when n is equal across groups, Equation 5 simplifies to

F =
(nΨ2)/

∑a
j=1(c

2
j)

MSW

(6)

The numerators in Equations 5 and 6 are SScontrast. There is only 1 degree of freedom for each
contrast, so SScontrast = MScontrast. The degrees of freedom for the denominator is N − a, where a is
the number of groups or, equivalently, the number of parameters in the full model (i.e., an intercept
and a− 1 α’s). Most of these values are contained in the variable returned by linear.comparison:
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my.contrast[[1]]$F

## [1] 7.21771

my.contrast[[1]]$SS.contrast

## [1] 2391.33

my.contrast[[1]]$df1

## [1] 1

my.contrast[[1]]$df2

## [1] 63

We can use these quantities to calculate MSW = F/SScontrast = 331.3. The p-value was 0.00922,
which is less than α = .05, so we reject the two-tailed null hypothesis described by Equation 1.

Examination of Equation 5 shows that Ψ is divided by a weighted sum of contrast weights. This
division means that the values of SScontrast, F , and p are not altered by multiplying the contrast
weights by a constant. In other words, contrast weights of (for example) c=(1, 1, 1, -3), c=(2, 2, 2,
-6), and c=(1/3, 1/3, 1/3, -1) will all give the same values of SScontrast, F , and p (although the value
of Ψ will differ; see Equation 4).

4.2.1 one-tailed tests

How can we evaluate the following hypotheses?

H0 : µ7 ≤ 1
6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) (7)

H1 : µ7 >
1
6
(µ1 + µ2 + µ3 + µ4 + µ5 + µ6) (8)

A one-tailed test is appropriate here. One-tailed tests can be done easily with t tests, and therefore
it would be useful to convert our F statistic (Equation 5) into a t statistic. In fact, it can be shown
that

t =
Ψ/
√∑a

j=1(c
2
j/nj)

√
MSW

(9)

follows a t distribution with N − a degrees of freedom. A comparison of Equations 5 and 9 will
show that F = t2, and therefore t = ±

√
F . In other words, it is possible to recover the magnitude

of t simply by taking the square-root of F . The sign of t can be recovered by noting the sign of Ψ̂:
if Ψ̂ < 0, then t = −

√
F , but if Ψ̂ > 0 then t =

√
F . In our example, Ψ̂ = 100.2, and therefore

t =
√
7.2177 = 2.68.

Finally, we can evaluate the null hypothesis. Our null hypothesis predicts that Ψ ≤ 0. Therefore,
when the null hypothesis is true, the largest possible value of Ψ in the population is zero, and
observed values of Ψ (i.e., Ψ̂) that are greater than zero are due only to sampling variation. This
is a long-winded way of saying that large, positive values of Ψ̂ are unlikely if the null hypothesis is
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true. These statements about Ψ̂ can be extended to t (Eq. 9): large, positive values of t are unlikely
if the null hypothesis is true. We can calculate the probability of obtaining a value of t that is equal
to or greater than our observed value of t = 2.68 given the assumption that Ψ = 0:

pt(2.68,df=63,lower.tail=FALSE)

## [1] 0.00469164

Note that the degrees of freedom (df) correspond to the value in the denominator in Equation 5
and so were set to N − a = 63. Setting lower.tail to FALSE tells R that we want to know the
probability of getting a t value that is larger than 2.68; setting lower.tail to TRUE (the default value)
would return the probability of getting a value that is less than 2.68. The probability p = 0.0046
represents the probability of getting our result, or something more extreme, if the hypothesis that
Ψ = 0 was true. Suppose, instead, we had assumed that Ψ was some value less than zero? In that
case, the probability of getting a value of t that was equal to or greater than our observed value
would be even lower. Therefore, the value p = 0.0046 represents the highest probability of obtaining
our result (or something more extreme) given that the null hypothesis Ψ ≤ 0 is true. Adopting a
standard Type I error rate (i.e., α = .01 or .05) would lead us to reject the null hypothesis in favour
of the alternative, Ψ > 0.

4.3 Unequal Variances
The denominator in Equation 5 is MSW , which is an estimate of σ2

e that is derived from all of the
groups, not just the ones being compared. When the variance is homogeneous across groups, MSW

is a better estimator of σ2
e than an estimate obtained from a subset of the groups.

What if the variance is not homogeneous? It turns out that F tests of linear contrasts are not
robust to violations of the homogeneity of variance assumptions. Moreover, it is not the case that
violations of the assumption have the effect of simply lowering α: sometimes α will be raise and
other times it will be reduced. When the groups have unequal variances, therefore, we use a different
method for estimating σ2

e

σ̂2
e =

∑a
j=1 wjs

2
j∑a

j=1 wj

(10)

where
wj = c2j/nj (11)

Using this new estimate of σ2
e , the formula for F becomes

F =
(Ψ2)/

∑a
j=1(cj/nj)∑a

j=1

[
(c2j/nj)s2j

]
/
∑a

j=1(c
2
j/nj)

(12)

The numerator degrees of freedom remains 1, but the denominator degrees of freedom no longer is
N − a. Instead, it is given by the formula

df =

[∑a
j=1(c

2
js

2
j/nj)

]2
∑a

j=1

[
(c2js

2
j/nj)2/(nj − 1)

] (13)

Fortunately, we rarely have to use Equations 12 and 13 to calculate F and df . Instead, we can
use linear.comparison() to do the heavy lifting:
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source(url("http://pnb.mcmaster.ca/bennett/psy710/Rscripts/linear_contrast_v2.R"))

## [1] "loading function linear.comparison"

contrast.unequal.var <- linear.comparison(y, g,
c.weights = list(c(-1, -1, -1, -1, -1, -1,6)),
var.equal = FALSE)

## [1] "computing linear comparisons assuming unequal variances among groups"
## [1] "C 1: F=3.772, t=1.942, p=0.080, psi=100.218, CI=(-14.451,214.886), adj.CI=

(-14.451,214.886)"

contrast.unequal.var[[1]]$psi

## [1] 100.218

contrast.unequal.var[[1]]$F

## [1] 3.77214

contrast.unequal.var[[1]]$p.2tailed

## [1] 0.0802195

my.contrast[[1]]$psi

## [1] 100.218

my.contrast[[1]]$F

## [1] 7.21771

my.contrast[[1]]$p.2tailed

## [1] 0.00921941

Notice that the variable var.equal has been set to FALSE. Also notice that Ψ̂ = 100.2, which
is the same value we obtained when we assumed equal variances. However, the estimate of σ2

e is
different from the previous value. Consequently, F is reduced from 7.218 to 3.772, and the contrast
is no longer significant (p = 0.08). Therefore, when assume unequal variances across groups, we do
not reject the null hypothesis that µ7 − 1

6
(µ1 + µ2 + · · ·+ µ6) = 0.

4.4 Example #1
This example is question #3 in the Exercises for Chapter 4.
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A psychologist collected data from three groups. The sample means are: Ȳ1 = 12, Ȳ2 = 10,
Ȳ3 = 6. MSW = 25, and there are 10 subjects per group. The psychologist wants to compare the
average of the means of Groups 1 and 2 to the mean of Group 3. We will use contrast coefficients
c=(1, 1, -2) to evaluate this comparison. The null and alternative hypotheses are

H0 : (1)µ1 + (1)µ2 − (2)µ3 = 0 (14)
H1 : (1)µ1 + (1)µ2 − (2)µ3 ̸= 0 (15)

(16)
Because we only have the group means, and not the raw scores, we need to use Equation 4 to

calculate Ψ:
Ψ̂ =

a∑
j=1

cjȲj = (1)12 + (1)10− (2)6 = 12 + 10− 12 = 10

Next, we use Equation 5 to calculate F :

F =
102/(1/10 + 1/10 + 4/10)

25
=

100/(6/10)

25
=

166.67

25
= 6.67

with numerator and denominator degrees of freedom of 1 and 30 − 3 = 27, respectively. The
probability of obtaining this F , or one more extreme, if the null hypothesis is true, is

pf(6.67, 1, 27,lower.tail=FALSE)

## [1] 0.0155463

1 - pf(6.67, 1, 27)

## [1] 0.0155463

which is less than α = .05, so we reject the null hypothesis in favor of the alternative. Note, by
the way, that the two forms of the pf command give the same result.

4.5 Example #2
We will now compute contrasts on the set of (fictitious) blood pressure data listed in Table 4.1 in
Maxwell and Delaney. The data, shown in Table 1, are from four groups of subjects corresponding
to four treatments for hypertension: drug therapy (aDrug), biofeedback (bFeedback), dietary modi-
fication (cDiet), and a treatment that combines all aspects of the other treatments (dCombo). The
dependent variable is blood pressure after treatment and is stored in bp$blood.

bp <- read.csv(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/maxwell_tab41.csv"))
names(bp)

## [1] "blood" "group"

levels(bp$group)

## NULL
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blood group
1 84.00 aDrug
2 95.00 aDrug
3 93.00 aDrug
4 104.00 aDrug
5 81.00 bFeedback
6 84.00 bFeedback
7 92.00 bFeedback
8 101.00 bFeedback
9 80.00 bFeedback

10 108.00 bFeedback
11 98.00 cDiet
12 95.00 cDiet
13 86.00 cDiet
14 87.00 cDiet
15 94.00 cDiet
16 91.00 dCombo
17 78.00 dCombo
18 85.00 dCombo
19 80.00 dCombo
20 81.00 dCombo

Table 1: Blood Pressure Data (Table 4.1)

We are going to do three contrasts. First, we want to compare dCombo to the average of the other
groups, so we will use a contrast c=(1/3, 1/3, 1/3, -1). Next, we will compare cDiet to the average
of aDrug and bFeedback with a contrast c=(1/2, 1/2, -1, 0). Finally, we will compare aDrug to
bFeedback with the contrast c=(1, -1, 0, 0). (Note that we must set the contrast for all groups, even
ones that are not included in the contrast.) We first construct a list that has all three contrasts.

blood.contrasts <- list(c(1/3, 1/3, 1/3, -1), c(1/2, 1/2, -1, 0), c(1, -1, 0, 0))

And then we pass the bp$blood, blood$group, and blood.contrasts to the function linear.comparison:

bp.results <- linear.comparison(bp$blood,
bp$group,blood.contrasts,
var.equal = TRUE)

## [1] "computing linear comparisons assuming equal variances among groups"
## [1] "C 1: F=4.815, t=2.194, p=0.043, psi=9.333, CI=(2.554,16.112), adj.CI=

(-2.036,20.703)"
## [1] "C 2: F=0.012, t=0.110, p=0.913, psi=0.500, CI=(-7.767,8.767), adj.CI=

(-11.601,12.601)"
## [1] "C 3: F=0.321, t=0.566, p=0.579, psi=3.000, CI=(-10.210,16.210), adj.CI=

(-11.163,17.163)"

bp.results.unequal <- linear.comparison(bp$blood,bp$group,
blood.contrasts,
var.equal = FALSE)
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## [1] "computing linear comparisons assuming unequal variances among groups"
## [1] "C 1: F=8.519, t=2.919, p=0.014, psi=9.333, CI=(2.298,16.369), adj.CI=

(0.320,18.346)"
## [1] "C 2: F=0.016, t=0.128, p=0.900, psi=0.500, CI=(-8.009,9.009), adj.CI=

(-10.361,11.361)"
## [1] "C 3: F=0.232, t=0.481, p=0.643, psi=3.000, CI=(-11.407,17.407), adj.CI=

(-15.862,21.862)"

We can list the results for comparison n using the syntax bp.results[[n]] (note the double
brackets!). The results for each comparison are quite long, so I’ll show only one complete record:

bp.results[[1]]

## $contrast
## [1] 0.333333 0.333333 0.333333 -1.000000
##
## $F
## [1] 4.81505
##
## $t
## [1] 2.19432
##
## $df1
## [1] 1
##
## $df2
## [1] 16
##
## $p.2tailed
## [1] 0.0433206
##
## $psi
## [1] 9.33333
##
## $confinterval
## [1] 2.5543 16.1124
##
## $adj.confint
## [1] -2.03615 20.70282
##
## $alpha
## [1] 0.05
##
## $SS.contrast
## [1] 324.414
##
## $d.effect.size
## [1] 1.13707
##
## $R2.alerting
## [1] 0.969702
##
## $R2.effect.size
## [1] 0.229665
##
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## $R2.contrast
## [1] 0.231325

The contrast coefficients are listed, as are the values of F , t =
√
F , p and SScontrast. Also listed

are the value of Ψ̂ and the 100(1− α)% confidence interval for Ψ. The last four values are measures
of effect size and association strength, which we’ll discuss later.

The F and p values for all three contrasts are

for (kk in 1:3) {
print(sprintf("Contrast %2i, F = %4.3f, p = %4.3f",

kk,
bp.results[[kk]]$F,
bp.results[[kk]]$p.2tailed))

}

## [1] "Contrast 1, F = 4.815, p = 0.043"
## [1] "Contrast 2, F = 0.012, p = 0.913"
## [1] "Contrast 3, F = 0.321, p = 0.579"

The results from the contrasts assuming unequal group variances are

for (kk in 1:3) {
print(sprintf("Contrast %2i, F = %4.3f, p = %4.3f",

kk,
bp.results.unequal[[kk]]$F,
bp.results[[kk]]$p.2tailed))

}

## [1] "Contrast 1, F = 8.519, p = 0.043"
## [1] "Contrast 2, F = 0.016, p = 0.913"
## [1] "Contrast 3, F = 0.232, p = 0.579"

The contrast between dCombo and the other groups is significant, but the other contrasts are not.
The value of the contrast is

bp.results[[1]]$psi

## [1] 9.33333

bp.results.unequal[[1]]$psi

## [1] 9.33333

In other words, using the contrast that was calculated assuming equal group variances,

Ψ̂ =
1

3
(µ1 + µ2 + µ3)− µ4 = 9.333

The confidence interval for the comparison is

12



Bennett, PJ PSYCH 710 Chapter 4

bp.results[[1]]$confinterval

## [1] 2.5543 16.1124

bp.results.unequal[[1]]$confinterval

## [1] 2.29767 16.36900

4.5.1 further calculations
You should repeat the analyses after multiplying the contrast weights by a scalar. For example, try
these coefficients:

blood.contrasts <- list(c(1/3, 1/3, 1/3, -1)* 3, c(1/2, 1/2, -1, 0) * 2, c(1, -1, 0, 0))

How do the results change? How do they stay the same?

4.6 Measures of Effect Size & Association Strength
A common measure of the standardized difference between two means is Cohen’s d

d = (µ1 − µ2)/σe

which can be estimated from the data by

d̂ = (Ȳ1 − Ȳ2)/
√
MSW (17)

In the case of two or more groups, we can define a standardized difference for a contrast among
population means as

d = 2Ψ/

(
σe

[
a∑

j=1

|cj|

])
We can estimate d from data by

d = 2Ψ̂/

(√
MSW

[
a∑

j=1

|cj|

])
(18)

When the comparison is between two group means (e.g., c=(-1,1,0,0,· · ·)), Equations 17 and 18 are
the same.

Your textbook describes several measures of association strength that are based on SScontrast.
The first is R2

alerting which is defined as

R2
alerting = SScontrast/SSB (19)

Recall that SSB is a measure of the variation among group means:

SSB =
a∑

j=1

[
nj(Ȳj − Ȳu)

2
]
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So, Equation 19 expresses SScontrast as a proportion of the “total variation” among groups. R2
alerting

can vary between 0 and 1. As your book notes, another interpretation of R2
alerting is that it is the

squared correlation between the comparison coefficients and the group means when the group n’s are
equal.

Another measure of association strength is R2
effectsize :

R2
effectsize = SScontrast/SSTotal (20)

Comparing Equations 19 and 20 shows that they have the same numerators but different denomi-
nators. R2

effectsize describes the between-group variability associated with the contrast relative to the
total variability among the dependent measures.

The third and final measure of association strength does not depend on SSTotal or SSB:

R2
contrast = SScontrast/(SScontrast + SSW ) (21)

Your textbook describes one advantage that R2
contrast has over the other two measures of effect size.

Suppose you are conducting a linear contrast that compares groups B and C to each other, and
ignores group A. It turns out that the values of R2

alerting and R2
effectsize depend on the mean of group

A even though that group is ignored in our contrast. The value of R2
contrast is less dependent on the

value of the ignored group A.
None of these measures is necessarily better than the other two; they simply convey different

information. You should note that it is possible for R2
alerting to be close to its maximum value (i.e.,

1) but R2
effectsize to be very small. (How could this happen?)

4.7 Orthogonal Contrasts
In this section we introduce the notion of orthogonal contrasts. When sample sizes are equal, two
contrasts are said to be orthogonal if and only if

a∑
j=1

(c1jc2j) = 0 (22)

where c1j and c2j are the coefficients, or weights, of the two contrasts. When sample sizes are unequal,
contrasts are orthogonal if and only if

a∑
j=1

(c1jc2j/nj) = 0 (23)

So, when sample sizes are equal, the pair of contrasts c1 = (1, 1, 1,−3) and c2 = (1, 1,−2, 0) are
orthogonal because

(1)(1) + (1)(1) + (1)(−2) + (−3)(0) = 0

However, c1 = (1, 1, 1,−3) and c3 = (1, 1, 0,−3) are not orthogonal because

(1)(1) + (1)(1) + (1)(0) + (−3)(−3) ̸= 0

A set of contrasts is said to be mutually orthogonal if and only if every possible pair of contrasts
is orthogonal. For instance the set of contrasts

Ψ1 = (1)µ1 + (1)µ2 + (−1)µ3 + (−1)µ4

Ψ2 = (1)µ1 + (−1)µ2 + (0)µ3 + (0)µ4

Ψ3 = (0)µ1 + (0)µ2 + (1)µ3 + (−1)µ4
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is (mutually) orthogonal because each pair of contrasts is orthogonal.
The concept of orthogonality is important for the following reason: multiple orthogonal contrasts

of a set of group means provide independent pieces of information about the way the means differ. In
other words, orthogonal contrasts provide separate and unique information about group differences.
Multiple contrasts that are not orthogonal, on the other hand, provide overlapping, correlated, and
partially-redundant information about group differences. This special characteristic of orthogonal
contrasts is represented in the Equation 24, which is true only for orthogonal sets of contrasts:

a−1∑
j=1

SScontrast,j = SSB (24)

Notice that the summation in Equation 24 is over a−1 contrasts. This leads to the second important
property of orthogonal contrasts: If there are a groups, then the largest possible set of orthogonal
contrast will have a− 1 elements. I will refer to a set of a− 1 orthogonal contrast as constituting a
complete orthogonal set. Note that I am not suggesting that there are only a−1 orthogonal contrasts.
In fact, there are an infinite number of orthogonal contrasts, and there are an infinite number of
orthogonal sets of contrasts. However, each complete orthogonal set will contain a− 1 elements.

These ideas about orthogonality, and the decomposition of SSB into independent pieces, will be
important when we discuss multiple comparisons.
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