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3.1 Linear Models

Whenever we do an analysis of variance we are determining which one of several
linear models best fits our data. Linear models have the form:

Yi = β0X0 + β1X1 + β2X2 + · · ·+ βpXp + ei (1)

where Yi is the dependent variable for subject i, and the X’s and β’s are, respectively,
predictors and parameters. The last element of the model, ei, is called the error or
residual term. Equation 1 represents a linear model because it is a weighted sum of
predictor variables (i.e., the X’s). It is important to note that only the parameters
must be linear, not the predictor variables. So, the equation

Yi = β0X0 + β1 exp (X1) + β2X
2
2 + · · ·+ βpXp + ei (2)

is a linear equation because it is possible to rewrite it as

Yi = β0X0 + β1X
′
1 + β2X

′
2 + · · ·+ βpXp + ei (3)

where X ′
1 = exp (X1) and X ′

2 = X2
2 . However,

Yi = β0X0 + exp (β1X1) + (β2X2)
2 + · · ·+ βpXp + ei (4)

is not a linear model.
The predictor variables usually represent things that differ among subjects. For

example, the X’s might represent subject’s age, gender, years of education, etc. In
designed experiments, the X’s also represent the treatments subjects receive, or the
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experimental group to which they belong. One exception to this general rule is the
first term in the model, β0X0, which usually represents things that are constant
across subjects. In the construction of the model, X0 is typically set to 1, yielding a
slightly simpler model

Yi = β0 + β1X1 + β2X2 + · · ·+ βpXp + ei (5)

The parameter β0 is often referred to as the model’s intercept. All of the parameters
and predictors form the predicted value, or estimate, of Yi, which is designated at
Ŷi. The residual term is the difference between the observed and estimated values of
Y

ei = Yi − Ŷi (6)

3.2 Least Squares

Much of statistics involves fitting models like Equation 5 to data. A common tech-
nique for accomplishing this task is to adjust the parameters of a model to find the
set of parameters that minimizes the sum of the squared residuals∑

e2i (7)

where the sum is taken across all i subjects. The parameters that minimize Equation
7 are said to provide the best-fitting model according to the least squares criterion
of goodness-of-fit. Least squares is the method of estimating parameters that is used
in the analysis of variance and multiple regression.

3.3 Comparing Models

A very wide range of linear models could be fit to any given data set. What criteria
should we use to decide which model is the “best”? One obvious criterion would be
to find the one that minimizes Equation 7. Unfortunately, such a criterion would not
(by itself) be very useful because it is always possible to fit the data exactly (i.e., have
Equation 7 go to zero) with a model that has one parameter, β, for each observation,
Yi. So, if we have 25 observations, we can always reproduce the observations exactly
with a model that has 25 parameters.

What is lacking here is some notion of simplicity, or parsimony: We want to use
a model that provides a good fit to the data but is, at the same time, as “simple”
as possible. A common measure of model complexity is the number of parameters:
a model with 4 parameters is judged to be more complex than a model with 3
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parameters. With this notion of model complexity, we can restate the problem of
model selection as choosing the model with the fewest parameters that provides a
good fit to the data.

To illustrate how this is done, we will analyze the data presented in Table 3.2 of
your textbook. The data are from a mood induction study by Pruitt (1988). Subjects
had to view videoclips that were designed to induce a pleasant, unpleasant, or neutral
mood. After viewing a videoclip, each subject rated his/her mood on several scales.
In addition, each subject was videotaped, and an assistant (who did not know which
videoclip was watched by the subject) later watched the videotape and rated each
subject’s mood on a 7-point scale. The assistant’s ratings are presented in Table 3.2
in the textbook. There were 10 subjects per group. Our task is to determine if mood
ratings were associated with videoclip condition (pleasant, neutral, and unpleasant).
We fit the following two models to the data:

Yij = µ+ αj + eij (8)

Yij = µ+ eij (9)

Here, Yij represents the score (i.e., mood rating) for subject i in group j. In
Equation 8, the observed score, Yij is the sum of a constant (µ), a group-specific

effect (αj), and a residual term (eij); the predicted score, Ŷij, equals µ + αj. In
Equation 9, the observed score is the sum of a constant and a residual term, and the
predicted score consists only of a constant. The effects are defined as αj = µj − µ,
and satisfy the constraint that the sum of all effects is zero:

a∑
j=1

αj = 0 (10)

where a is the number of groups. Note that the models specified by Equations 8 and
9 are nested versions of each other because Equation 9 can be obtained by setting
αj = 0. Equations 8 and 9 represent the full and reduced models, respectively. The
question of interest is whether the full model provides a better fit to the data than
the reduced model, even after taking into account its greater complexity.

Now that we’ve specified the models, we need to estimate the best-fitting (least
squares) parameters. For the full model, it can be shown that the sum of squared
residuals for Equation 8 is minimized by setting µ = Ȳu and αj = α̂j, where

Ȳu =
a∑

j=1

Ȳj/a (11)

α̂j = Ȳj − Ȳu . (12)
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Ȳu is simply the mean of the group means; differences in the size of the groups (if
they exist) are ignored, and so Ȳu is said to be the unweighted mean of the group
means. α̂j is simply the difference between the mean of group j and Ȳu. For the
reduced model, setting the one free parameter, µ, to the grand average, Ȳ , minimizes
the sum of squared residuals.

3.3.1 F formula

Next, we need to derive a quantitative measure of the relative goodness-of-fit of the
two models. We denote the sum of squared residuals for the best-fitting full
and reduced models as EF and ER, respectively. Associated with EF and ER are
degrees-of-freedom dfF = N − a and dfR = N − 1, respectively, where N is the total
number of observations and a is the number of groups. Note that dfR − dfF = a− 1
is the difference between the number of parameters estimated in the full model (3 α’s
and 1 intercept) and the reduced model (1 intercept). The formula for computing
the difference between the two models is

F =
(ER − EF )/(dfR − dfF )

EF/dfF
(13)

Equation 13 can be used to compare all nested linear models. All tests in ANOVA,
analysis of covariance, and multiple regression can be computed using this formula.

3.3.2 Null Hypothesis Testing

Finally, we are in a position to evaluate the hypothesis of no difference between
the goodness-of-fit of the full and reduced models. Note that this comparison is
equivalent to evaluating the hypothesis that all of the groups have the same mean; or
(equivalently) that all αj’s are zero. More formally, we are comparing the hypotheses

H0 : α1 = α2 = · · · = αa = 0
H1 : αj ̸= 0

The null hypothesis is that all of the effects are zero, and therefore that all group
means are equal. The alternative hypothesis is that at least one effect is not zero, and
therefore that not all group means are equal. When the residuals, eij, are distributed
as independent, normal random variables, with mean of zero and a constant variance,
then F in Equation 13 follows an F distribution with (dfR−dfF ) and dfF degrees of
freedom in the numerator and denominator, repsectively (Figure 1). Under the null
hypothesis, therefore, large values of F should be relatively rare (Figure 2). Using
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Figure 1: The F distribution is determined by two parameters which correspond to
the degrees of freedom of the numerator and denominator of the F ratio. This figure
shows the probability density functions of three different F distributions.
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the F distribution, we can calculate the probability of obtaining a value of F that is
as large or larger than the observed value of F under the assumption that the null
hypothesis is true. If the p-value is smaller than our criterion value, typically .05 or
.01, then we reject the null hypothesis in favour of the alternative. If the p-value is
not smaller than our criterion, then we do not reject the null hypothesis.

3.3.3 Relation to ANOVA

Imagine an experiment in which we measure some aspect of behaviour on N subjects
who were assigned randomly to a groups with the constraint that each group has
the same number (n) of subjects (i.e., N = an). A standard ANOVA table is shown
in Table 1. The independent variable, Group, has a − 1 degrees of freedom; the
other item listed in the Source column, Residuals, has a(n − 1) = N − a degrees of
freedom. The total degrees of freedom is equal to one less than the total number of
subjects (i.e., N−1). Each source also has a Sum-of-Squared Error (SS) and a Mean
Squared Error (MS). The SS and MS values for Group are referred to as between-
group Sum-of-Squares and Mean Squared Error (i.e., SSB and MSB), whereas the
values for Residuals often are referred to as within-group Sum-of-Squares and Mean
Squared Error (i.e., SSW and MSW ).

Source df Sum Sq Mean Sq F value Pr(>F)
Group a− 1 SSB MSB MSB/MSW p
Residuals a(n− 1) SSW MSW

Table 1: A standard ANOVA table for a one-way design.

The elements of Equation 13 are closely tied to various components of a standard
ANOVA table (e.g., Table 1). For example, it can be shown that

F =
(ER − EF )/(dfR − dfF )

EF/dfF
=

MSB

MSW

(14)

From Equation 14 it is possible to show that

EF = SSW

ER = SSB + SSW = SSTotal

ER − EF = SSTotal − SSW = SSB
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Figure 2: This figure plots the probability of drawing a random number from an
F (2, 27) distribution that is greater than some criterion, denoted as V . For example,
the dotted lines indicate that the probability of drawing an F value that is ≥ 3.354
is 0.05. Note that the probability of drawing values greater than 4 is very low.
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MSW and EF/dfF are estimates of the population error variance, σ2
e . If the null

hypothesis is true, MSB and (ER−EF )/(dfR−dfF ) also are estimates of σ2
e . However,

if the null hypothesis is false, then

E(MSB) = σ2
e +

∑
j njα

2
j

a− 1
(15)

where nj is the number of subjects in group j. So, when αj ̸= 0 (for at least one
group, j), E(MSB) will tend to be larger than E(MSW ), and the F ratio (see Table
1) ought to be greater than one.

Finally, “Residual Standard Error”, a measure of goodness-of-fit that is provided
by many statistical software packages, can be shown to be equal to

√
EF/dfF .

3.3.4 Numerical Example

The data from the mood-induction experiment are shown in Table 2. You can load
the data into R with the following command:

load(url("http://www.pnb.mcmaster.ca/bennett/psy710/datasets/mood_data.Rdata"))

Next, we want to set up R so that it defines effects as in Equation 10:

options(contrasts=c("contr.sum","contr.poly") )

The contr.sum parameter in the options command tells R to use the sum-to-
zero definition (Eq 10) of the α’s when the grouping variable is a factor. If you do
not use this command, then R will use a different definition for the α’s, and your
results will not match those shown here or in the textbook.

In R, we fit the full and reduced models to the data with the following commands:

names(mood.data)

## [1] "group" "mood"

mood.full <- lm(mood~1+group,data=mood.data)

mood.restricted <- lm(mood~1,data=mood.data)

The sum of the square residuals and degrees of freedom for each model are given
by
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(E.full<-sum(residuals(mood.full)^2))

## [1] 26

(E.restricted<-sum(residuals(mood.restricted)^2))

## [1] 72.67

(df.full<-mood.full$df.residual)

## [1] 27

(df.restricted<-mood.restricted$df.residual)

## [1] 29

Finally, we can calculate F and a p-value:

(F <- ( (E.restricted-E.full)/(df.restricted-df.full)/(E.full/df.full) ) )

## [1] 24.23

(p.value <- 1-pf(F,df1=(df.restricted-df.full),df2=df.full) )

## [1] 9.421e-07

Because F = 24.23 and p ≪ .001, we reject the null hypothesis that all αj = 0
and accept the alternative hypothesis that αj ̸= 0 for at least one group j.

Fortunately, we do not have to calculate F this way every time we want to
compare models. A short-cut would be to use the two-model version of R’s anova
command:
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Pleasant Neutral Unpleasant
6 5 3
5 4 3
4 4 4
7 3 4
7 4 4
5 3 3
5 4 1
7 4 2
7 4 2
7 5 4

mean 6 4 3

Table 2: Data from mood-induction experiment.

anova(mood.restricted,mood.full)

## Analysis of Variance Table

##

## Model 1: mood ˜ 1

## Model 2: mood ˜ 1 + group

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 29 72.7

## 2 27 26.0 2 46.7 24.2 9.4e-07 ∗∗∗
## ---

## Signif. codes:

## 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The anova command lists the formula for each model as well as a table listing
the residual degrees of freedom, the residual sums-of-squares (RSS), the difference
dfR − dfF , the difference between the sums of squared residuals for the two models
(46.7), F , and p. Note that the F and p values are the same as the ones we calculated
by hand.

There is even a shorter shortcut that can be used in this case, namely the single-
model version of the anova command:
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anova(mood.full)

## Analysis of Variance Table

##

## Response: mood

## Df Sum Sq Mean Sq F value Pr(>F)

## group 2 46.7 23.33 24.2 9.4e-07 ∗∗∗
## Residuals 27 26.0 0.96

## ---

## Signif. codes:

## 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

This version of the command lists an anova table. Note that the values of F
and p are the same as those obtained before. Also note that the “Sum Sq” value of
46.7 is the same one calculated before as the difference between the sum of squared
residuals for the full and restricted model. In fact, it is the same value. The SSGroup

term represents the change in the sum of squared residuals that occurs when the
factor “group” is dropped from the analysis. Or, in other words, it is the effect of
setting all αj’s to zero.

3.3.5 Confidence intervals for αj

Rejecting the null hypothesis implies that αj ̸= 0 for at least one group. However,
often we want to know more about the α’s : In some situations it is crucial to know
what the α’s are, not just whether or not they differ from zero. The values of the
model parameters are given by R’s summary function:

summary(mood.full)

##

## Call:

## lm(formula = mood ˜ 1 + group, data = mood.data)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2 -1 0 1 1

##

## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 4.333 0.179 24.19 < 2e-16

## group1 1.667 0.253 6.58 4.7e-07

## group2 -0.333 0.253 -1.32 0.2

##

## (Intercept) ∗∗∗
## group1 ∗∗∗
## group2

## ---

## Signif. codes:

## 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.981 on 27 degrees of freedom

## Multiple R-squared: 0.642, Adjusted R-squared: 0.616

## F-statistic: 24.2 on 2 and 27 DF, p-value: 9.42e-07

You should confirm for yourself that the Intercept is Ȳu, and that the values listed
as group1 and group2 correspond to α1 and α2, respectively. Where is α3? It is not
shown in the table, but it can be calculate using Equation 10. The t and p values
beside each parameter evaluate the null hypothesis that the parameter is zero. In
this case, the Intercept and group1 parameters differ significantly from zero.

Next to each estimated parameter is a standard error, which can be used to
calculate a confidence interval. To calculate a confidence interval, we first need to find
the so-called critical value of t, from the t distribution, corresponding to our residual
degrees of freedom and the α level (N.B. Here α refers to our criterion for rejecting
the null hypothesis (e.g., α = .05), not the effects in our linear model). The residual
degrees of freedom for the full model is 27 (you can see it listed in the summary).
Let us set α = .05 to compute the 100(1−α)%, or 95%, confidence interval. We need
to calculate the critical value of t, tcritical,α/2, for which the probability of drawing a
random value (from a t distribution with df = 27) that is greater than or equal to
tcritical,α/2 is α/2.

t.alpha <- .05/2

(t.critical <- qt(1-t.alpha,df=27) )

## [1] 2.052

In the previous calculation, note that α was divided by 2.
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The 95% confidence interval is calculated with the formula

αj ± tcritical,α/2 sej (16)

where sej is the standard error of parameter j. For group1, the 95% confidence
interval is 1.667±2.052×0.253 = (1.148, 2.186). The interval (1.148, 2.186) is called
the 95% confidence interval because an interval constructed this way will contain the
true population mean 95% of the time.

A simpler way of calculating confidence intervals for parameters in a linear model
is to use R’s confint() function:

confint(mood.full)

## 2.5 % 97.5 %

## (Intercept) 3.9657 4.7009

## group1 1.1468 2.1865

## group2 -0.8532 0.1865

confint(mood.full,level=.99)

## 0.5 % 99.5 %

## (Intercept) 3.8369 4.8297

## group1 0.9647 2.3687

## group2 -1.0353 0.3687

The first call lists the 95% confidence intervals; the second lists the 99% confidence
intervals.

3.3.6 Measures of association & effect size

One common measure of association strength between between the dependent vari-
able and the predictors (i.e., between Yi and Ŷi) is R

2, which is known as Multiple-R
squared, the coefficient of determination, and eta squared (η2). R2 represents the
amount of variance in the dependent variable that is accounted for, or explained by,
the linear model. One problem with R2 is that it is biased: the value estimated
from the data is higher than the value in the population, and the bias increases as
sample size decreases. Adjusted-R2, denoted by R̃2, is an unbiased, or at least a less
biased, estimate of the population R2. Both R2 and R̃2 are printed by R’s summary()
function.
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Another common measure of association is omega-squared (ω2), which is the
variance of the treatment, or group, effects (i.e., the α’s) divided by the sum of the
sum of the variance of the treatment effects and error variance:

ω2 =
σ2
α

σ2
α + σ2

e

(17)

The values of η2 and ω2 can be calculated from quantities listed in ANOVA tables.
The formula for eta-squared is

η2 =
SS group

SS total

(18)

and the formula for ω2 is

ω̂2 =
SSGroup − (a− 1)MSResid

SS total +MSResid

(19)

where (a-1) is the degrees of freedom for Group. For one-way designs, the value of
adjusted-R2, which usually is listed in regression summary tables, is very similar to
ω2. Cohen (1988) suggested that ω2 values of 0.01, 0.06, and 0.14 corresponded to
weak, moderate, and strong associations.

Cohen’s f is a measure of effect size. It is the ratio of the standard deviation of
the α’s divided by the standard deviation of the residuals. For this one-way design,
f is well-approximated by the equation

f̂ ≈

√
R̃2

1− R̃2
(20)

Alternatively, if you have access to the degrees of freedom and F value for the effect
in question, and the total sample size, you can use the formula

f̂ =

√(
df.effect

N.total

)
(F.effect− 1) (21)

Cohen’s f expresses the standard deviation among effects relative to the standard
deviation of residuals. According to Cohen (1988), small, medium, and large effects
correspond to f ’s of 0.1, 0.25, and 0.4, respectively. Among other things, f is useful
for calculations of power.
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3.3.7 Example: Association Strength & Effect Size

In this section we illustrate how to calculate association strength and effect size using
the results from the mood-induction study.

anova(mood.full)

Analys i s o f Variance Table

Response : mood
Df Sum Sq Mean Sq F value Pr(>F)

group 2 46 .7 23 .33 24 .2 9 .4 e−07 ∗∗∗
Res idua l s 27 26 .0 0 .96
−−−
S i g n i f . codes :
0 '∗∗∗ ' 0 .001 '∗∗ ' 0 .01 '∗ ' 0 .05 ' . ' 0 .1 ' ' 1

Using Equation 18 and 19 we see that η2 is 46.7/(46.7 + 26), or 0.64. and ω̂2 is

46.7− 2× 0.96

46.7 + 26 + 0.96
= 0.608

For 1-way designs ω2 is approximately equal to adjusted R-squared (R̃2):

( adj.R2 <- summary(mood.full)$adj.r.squared ) # omega-squared

## [1] 0.6157

Cohen’s f can be estimated from adjusted R-squared and from the quantities in
the ANOVA table using Equations 20 and 21:

sqrt( adj.R2/(1-adj.R2) ) # cohen's f

## [1] 1.266

df.effect <- 2

N.total <- 27+2+1

F.effect <- 24.2

sqrt( (df.effect/N.total)*(F.effect-1) ) # cohen's f

## [1] 1.244
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These measures of effect size and association strength can be calculated using
several commands in the effectsize package. One nice feature of these commands
is that they return confidence intervals. By default, the 90% intervals are returned,
but we can ask for the 95% interval instead:

# install.packages("effectsize")

library(effectsize)

eta_squared(mood.full,ci=0.95)

## # Effect Size for ANOVA

##

## Parameter | Eta2 | 95% CI

## -------------------------------

## group | 0.64 | [0.39, 0.77]

omega_squared(mood.full,ci=0.95)

## # Effect Size for ANOVA

##

## Parameter | Omega2 | 95% CI

## ---------------------------------

## group | 0.61 | [0.34, 0.75]

cohens_f(mood.full,ci=0.95)

## # Effect Size for ANOVA

##

## Parameter | Cohen's f | 95% CI

## ------------------------------------

## group | 1.34 | [0.79, 1.84]

Note that the value of Cohen’s f returned by cohens f differs from the one calculated
using values in the ANOVA table. The reason for this difference is that cohens f

calculates f using an algorithm that is equivalent to Equation 20, but uses R2 (or,
equivalently, η2) instead instead of R̃2:

f̂ =

√
η2

1− η2
=

√
0.64

1− 0.64
= 1.33
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3.4 Power

The power of a test refers to the probability of rejecting the null hypothesis when it
is false. In the case of a oneway ANOVA, power depends on the number of groups,
number of subjects per group, α level, and effect size.

3.4.1 estimating sample size from a pilot study

As an example of how to use power to plan your experiments, consider the case where
you are planning to measure reaction time (RT) on three groups. Based on previous
experiments, or perhaps your own pilot data, you think that the average RTs in each
group will be 400, 450, 500, and the within-group standard deviation will be 100.
Cohen’s f is given by

σm

σe

=

√
(400−450)2+(450−450)2+(500−450)2

3

100
=

50

100
= .408 (22)

According to Cohen, this is a large effect. Now, the question is how many subjects
should you test in each group in the actual experiment to achieve a power of 0.8? To
answer this question, you need to specify the number of groups (3), the significance
level that you will use (α = .05), and the effect size (f = 0.41). So, given these
assumptions, how many subjects do we need to attain a power of 0.8? To find out,
we should use R’s pwr.anova.test() function in the pwr package:

library(pwr)

pwr.anova.test(k=3,f=.41,sig.level=.05,power=.8,n=NULL)

##

## Balanced one-way analysis of variance power calculation

##

## k = 3

## n = 20.14

## f = 0.41

## sig.level = 0.05

## power = 0.8

##

## NOTE: n is number in each group

It turns out that I will need nearly 20 subjects per group to attain the desired power.
If I had set α = .01 instead of .05, then I would need ≈ 30 subjects per group.
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Suppose we can test only 10 subjects per group due to the constraints imposed
by time and money. What is the power of such a study?

pwr.anova.test(k=3,f=.41,sig.level=.05,power=NULL,n=10)

##

## Balanced one-way analysis of variance power calculation

##

## k = 3

## n = 10

## f = 0.41

## sig.level = 0.05

## power = 0.4614

##

## NOTE: n is number in each group

The power is 0.46, so I have only a 46% chance of rejecting the null hypothesis if it
is in fact false.
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The built-in function power.anova.test() is an alternative to pwr.anova.test:

groupMeans <- c(400,450,500);

power.anova.test(groups=3,

between.var=var(groupMeans),

within.var=100^{2},
sig.level=.05,

power=.8,n=NULL)

##

## Balanced one-way analysis of variance power calculation

##

## groups = 3

## n = 20.3

## between.var = 2500

## within.var = 10000

## sig.level = 0.05

## power = 0.8

##

## NOTE: n is number in each group

pwr.anova.test() and power.anova.test() are very useful functions that can
be used in a variety of ways when planning experiments. It is important to keep
in mind, however, that power calculations, like all other statistical calculations, are
valid only if the assumptions behind the calculations are correct. In the case of
power calculations, the assumptions are that the data are distributed as independent,
normal random variables with constant variance. If those assumptions are false, then
the results of the power calculations can be misleading, sometimes seriously so.

3.5 Statistical Assumptions

The interpretation of the p-value calculated for the F statistic (Equation 13) rests
on the assumption that the observed F does indeed follow an F distribution. Three
assumptions must be met for this to be true:

1. The population distribution of scores on the dependent variable, Y , must be
normal within each group.

2. The population variances of scores Y must be equal for all a groups. This is
often called the homogeneity of variance assumption.
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3. The scores must be statistically independent of each other. Typically, this
assumption is met by assigning subjects randomly to groups/treatments.

3.5.1 robustness

In practice, the above assumptions are almost never met exactly, and so it is impor-
tant to consider the effects that violations of the assumptions have on our analyses.

In general, ANOVA is robust to violations of the normality assumption. Specif-
ically, if the distribution of scores in all groups deviate from normality in the same
way, the actual Type I error rate often will be reasonably close to the expected Type
I error rate. Of course, deviations from normality do not have an all-or-none effect on
our analyses: the greater the deviation from normality, then the stronger the effect
on our actual Type I error rate. Also, the effect of non-normality on Type I error rate
increases in cases where sample sizes are unequal across groups. Finally, deviations
from non-normality that differ across groups - for example, if scores are skewed pos-
itively in one group and negative in another group - can significantly affect power.
Finally, you should be aware that Wilcox and Keselman (2003) have argued that
even apparently small deviations from normality can dramatically reduce power.

It is generally assumed that ANOVA is robust to violations of the homogeneity
of variance assumption, as long as samples sizes in each group are equal. If sample
sizes are equal, the F test performs well if the ratio of the largest and smallest
variances among the groups is ≈ 3 or less. If sample sizes are unequal, however, then
even moderate heterogeneity of variance can inflate Type I error rates significantly.
Also, if the scores within each group are distributed non-normally, then moderate
heterogeneity of variance will inflate Type I error rates even if group n’s are equal
(Wilcox and Keselman, 2003).

The F test is not robust to violations of the independence-of-errors assumption:
Violations of this assumption will result in very poor control of Type I error rates.
Kenny and Judd (1986) discuss how non-independence can affect your data analyses.

3.5.2 tests for non-normality

There are many statistical methods that can be used to formally test whether
your data are distributed non-normally. Two that are implemented in R are the
Kolmogorov-Smirnov test (ks.test()) and the Shapiro-Wilk’s test (shapiro.test()).
Of the two, the Shapiro-Wilk’s test is preferred because it has higher power. How-
ever, the power of both of these tests is not very good, so they will not be sensitive
to small deviations from normality. One way of solving this problem is to use a more
liberal decision criterion (e.g., α = 0.1).
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shapiro.test(residuals(mood.full) )

##

## Shapiro-Wilk normality test

##

## data: residuals(mood.full)

## W = 0.85, p-value = 5e-04

As you can see, the p-value is quite small, so we reject the null hypothesis that
the residuals are distributed normally. We’ll return to the cause of the non-normality
in a moment.

A very useful graphical method for searching for non-normality is to plot the
residuals of your analysis in a qqplot using R’s qqnorm function. If the scores are
distributed normally, then they will fall along a straight line in a qqplot. The fol-
lowing commands were used to create Figure 3:

qqnorm(residuals(mood.full),main="residuals from mood.full");

qqline(residuals(mood.full) );

The second function, qqline, adds a reference line. You can see that the residuals
do not fall along the line: although there follow a linear trend, there is a strange
scalloping, or staircase, effect. This effect is due to the nature of the relatively coarse
nature of the dependent variable (i.e., an integer on a 7-point mood scale). We can
test this idea by adding a very small amount of noise to the residuals. Adding the
noise jitter makes the data look much more normally distributed (see Figure 4).

tmp<-residuals(mood.full)+rnorm(residuals(mood.full),mean=0,sd=0.333)

shapiro.test(tmp)

##

## Shapiro-Wilk normality test

##

## data: tmp

## W = 0.95, p-value = 0.2
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Figure 3: qqnorm plot of residuals of mood.full model.
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qqnorm(tmp,main="noise-jittered residuals");

qqline(tmp);

3.5.3 tests for homogeneity of variance

There are many statistical methods that can be used to formally test for hetero-
geneity of variance. One common test that is implemented in R is the Bartlett test
(bartlett.test()). As is the case for tests of non-normality, these tests often lack
power, so you might consider using a liberal decision criterion (e.g., α = 0.1).

bartlett.test(mood.data$mood,mood.data$group)

##

## Bartlett test of homogeneity of variances

##

## data: mood.data$mood and mood.data$group
## Bartlett 's K-squared = 2.6, df = 2, p-value

## = 0.3

As you can see, p = 0.2708, so we do not reject the null hypothesis of equal
variances among groups.

You might also consider using boxplot() to graphically inspect your data for
differences in variance.

3.5.4 data transformations

What should you do if you find that your data violate the assumption of normality
and/or homogeneity of variance? One possible remedy is to transform your data
such that the transformed scores are more nearly normal and exhibit equal variances.
Some common transformations (Kirk, 1995) are:

1. Square-root Transformation: Y ′ =
√
Y . This transformation is useful when

σ2
e = kµ. If some scores are less than 10, then consider using Y ′ =

√
Y + 0.5.

2. Log Transformation: Y ′ = log10(Y ). Useful when σe = kµ and/or cases where
data are skewed positively. If any scores are zero, use Y ′ = log10(Y + 1).
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Figure 4: qqnorm plot of jittered residuals of mood.full model.
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3. Reciprocal Transformation: Y ′ = 1/Y . Useful when µ2 = kσe and/or cases
where data are skewed positively. If any scores are zero, use Y ′ = 1/(Y + 1).

4. Angular or Inverse Sine Transformation: Y ′ = 2arcsin(
√
Y ). Useful when Y is

a proportion.

Sometimes the inverse sine (or arcsin) transformation is given as Y ′ = arcsin(
√
Y )

(i.e., without the 2). The two version of the transformation will give exactly
the same results. In fact, any linear transformation (e.g., Y ′ = kY + b) will
have no effect on the results of your F test.

It is important to remember that any conclusions that you make as a result of
statistical tests on transformed data apply to the transformed data, not the original
data. So, if you use a log transformation, then you conclusions will apply to the
log-transformed scores, not necessarily to the original scores.

3.5.5 alternative analyses

Finally, we consider what to do if assumptions of normality and/or homogeneity of
variance are violated, and we choose not to do analyses on transformed data.

If the data within each group are distributed normally but have different vari-
ances, then you should consider using the Welch correction procedure described in
your textbook (pages 131-135). The basic problem here is that, in cases where the
groups have unequal variances, the F calculated by Equation 13 will not be dis-
tributed as an F statistics with dfR − dfF and dfF degrees of freedom. However, it
will be distributed approximately as an F variable with reduced degrees of freedom.
The formula for correcting the degrees of freedom is given on page 134 in the text-
book. You can use R’s oneway.test() function evaluate group differences with this
approach.

oneway.test(mood~group,data=mood.data)

##

## One-way analysis of means (not assuming

## equal variances)

##

## data: mood and group

## F = 18, num df = 2, denom df = 17, p-value =

## 6e-05
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In this case the effect of group is still significant.
The Welch correction for degrees of freedom still assumes that the data are dis-

tributed normally. If the data are not distributed normally, then you might con-
sider using a non-parametric procedures. So-called non-parametric procedures make
minimal assumptions about the data, and so are appropriate when the scores are
non-normal and/or differ in variance. Your book describes the Kruskal-Wallis test,
which is appropriate for the one-way designs we are considering here. In R, the
Kruskal-Wallis test is used in the following way:

kruskal.test(mood~group,data=mood.data)

##

## Kruskal-Wallis rank sum test

##

## data: mood by group

## Kruskal-Wallis chi-squared = 19, df = 2,

## p-value = 7e-05

Again, the effect of group is significant.
You might think that you should always use non-parametric procedures because

they make weaker assumptions about the data than do parametric procedures (like
the F test). However, such a decision would be unwise: when the assumptions of
normality and equal variance are approximately true, parametric tests aremuch more
powerful than non-parametric tests. Some writers have argued that traditional non-
parametric tests are so severely “underpowered” that they should almost never be
used (Wilcox, 1992). A variety of modern, non-parametric tests have been developed
that have considerably more power than traditional ones (Efron and Tibshirani, 1993;
Wilcox, 2005). Such methods are beyond the scope of this course, but are covered in
other courses. If you routinely analyze data that violate the assumptions of normality
and homogeneity of variance, then you should seriously think about learning these
methods.
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