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12 higher-order within-subject designs

Previously we discussed the analysis of data collected in experiments that had a single within-subject factor.
Here we extend those ideas to cover situations in which we have two or more within-subjects factors, and
one within- and one between-subjects factor. As before, we consider only balanced data. Also, we assume
that the subjects variable is random and the experimental factors are fixed. Therefore, we can generalize
our results to different subjects, but not to different levels of the independent variables.

12.1 factorial within-subjects designs

First consider a situation in which all combinations of two experimental variables are presented to each
subject. This a within-subject factorial design: all of the factors are crossed within every subject. For
instance, consider a hypothetical perception experiment that uses a 2 × 3 within-subject factorial design
to examine the effects of stimulus orientation and visual noise (i.e., distractors) on the time required to
discriminate two letters. The noise factor has two levels – present vs. absent – and the angle of the
stimulus was 0, 4, or 8 deg from upright/vertical. The dependent variable is response time (RT). Data were
collected from ten subjects; every subject was tested once in all six experimental conditions, and the order
of conditions was randomized for each subject.

A full model for this two-way within-subjects design is

Yijk = µ+ αj + βk + πi + (αβ)jk + (απ)ji + (βπ)ki + (αβπ)jki + ϵijk (1)

where Yijk is the score on the dependent variable from subject i in the jth level of A and the kth level of B;
µ is the intercept; αj is the effect associated with the jth level of A; βk is the effect associated with the kth
level of B; πi is the effect associated with the ith subject; (αβ)jk is the effect of the interaction between the
jth level of A and the kth level of B; (απ)ji is the effect of the interaction between the jth level of A and the
ith subject; (βπ)ki is the effect of the interaction between the kth level of B and the ith subject; (αβπ)jki
is the effect of the three-way interaction of the jth level of A, the kth level of B, and the ith subject; and
ϵijk is the error for the observation of the jth level of A, the kth level of B, and the ith subject. α, β, and
the (αβ) are fixed effects, whereas π and all of the interactions with π are random effects. All of the effects
are defined so they satisfy the sum-to-zero constraint.

The analysis of variance estimates the variation (i.e., sums of squares) associated with each main effect
and interaction by calculating the difference between the sum-of-squared residuals for the full model and
a model in which the parameters for the effect of interest have been set to zero. Each sum of squares is
divided by the relevant number of parameters (i.e., the degrees of freedom) to yield a mean square (Table
1). Inferential statistics are performed by dividing each mean square by an appropriate error term and then
using an F test to evaluate the null hypothesis that the effects (i.e., the α’s, β’s, and (αβ)’s) are zero. For
a between-subjects factorial design, the F s are calculated by dividing all of the mean squares by the mean
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square residuals/within. For a within-subjects factorial design, the main effects of A and B and the A×B
interaction are evaluated with different error terms (see Table 1). There is no unbiased F test for any effect
that includes subject.
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Table 1: Expected Mean Squares and F statistics for a factorial within-subjects design with n subjects (S),
a levels of factor A, and b levels of factor B. A and B are assumed to be fixed, and subjects is random.

12.1.1 R example

My example uses the data from Table 12.1 in Maxwell and Delaney (2004), although I modified the numbers
to make the F and p values more believable. The data file rtData-mw-12-1.rda contains the data in long-
format and wide-format data frames.

load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/rtData-mw12-1.rda"))
sapply(rt.wide,class)

## subj absent.a0 absent.a4 absent.a8 present.a0 present.a4
## "factor" "numeric" "numeric" "numeric" "numeric" "numeric"
## present.a8
## "numeric"

summary(rt.long)

## subj noise angle rt
## s1 : 6 absent :30 a0:20 Min. : 284
## s10 : 6 present:30 a4:20 1st Qu.: 459
## s2 : 6 a8:20 Median : 571
## s3 : 6 Mean : 588
## s4 : 6 3rd Qu.: 686
## s5 : 6 Max. :1000
## (Other):24

First we use aov. Note how angle and noise are listed both inside and outside Error.
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options(width=80,digits=4)
options(contrasts=c("contr.sum","contr.poly"))
# following model is incorrect
rt.aov.00 <- aov(rt ~ 1+Error(subj/(angle*noise)),data=rt.long) # no fixed effects!
# the next 2 models are equivalent:
rt.aov.01 <- aov(rt ~ angle*noise+Error(subj/(angle*noise)),data=rt.long)
# rt.aov.01b <- aov(rt ~ angle*noise+Error(subj/(angle+noise+angle:noise)),data=rt.long)
summary(rt.aov.01)

##
## Error: subj
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 9 344423 38269
##
## Error: subj:angle
## Df Sum Sq Mean Sq F value Pr(>F)
## angle 2 225422 112711 7.79 0.0036 ∗∗
## Residuals 18 260280 14460
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
##
## Error: subj:noise
## Df Sum Sq Mean Sq F value Pr(>F)
## noise 1 234625 234625 15.7 0.0033 ∗∗
## Residuals 9 134551 14950
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
##
## Error: subj:angle:noise
## Df Sum Sq Mean Sq F value Pr(>F)
## angle:noise 2 187983 93992 7.51 0.0043 ∗∗
## Residuals 18 225402 12522
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The ANOVA table contains F tests for the main effects and interaction that use the correct error terms.
However, the p value for each F test was calculated assuming the variance-covariance matrix for the residuals
was spherical. Deviations from sphericity can inflate the Type I error rate for tests of effects with more than
1 degree of freedom, and therefore it is important to check the assumption for the main effect of angle and
the angle × noise interaction.

The following code performs the analysis with aov_car in the afex package:

library(afex)
rt.aov.02 <-aov_car(rt ~ angle*noise+Error(subj/(angle*noise)),data=rt.long)
summary(rt.aov.02)

##
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 20765813 1 344423 9 542.62 2.4e-09 ∗∗∗
## angle 225423 2 260280 18 7.79 0.0036 ∗∗
## noise 234625 1 134551 9 15.69 0.0033 ∗∗
## angle:noise 187983 2 225402 18 7.51 0.0043 ∗∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
##
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##
## Mauchly Tests for Sphericity
##
## Test statistic p-value
## angle 0.690 0.227
## angle:noise 0.639 0.167
##
##
## Greenhouse -Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
##
## GG eps Pr(>F[GG])
## angle 0.764 0.0083 ∗∗
## angle:noise 0.735 0.0103 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
##
## HF eps Pr(>F[HF])
## angle 0.8880 0.005369
## angle:noise 0.8431 0.007177

The first part of the summary contains an ANOVA table that assumes sphericity. The second part of the
Anova output shows the results of the Mauchly test for sphericity. Notice that sphericity tests are done
only for the angle and noise:angle terms, not noise. The sphericity assumption implies that all
pairwise difference scores among the levels of the within-subject variable have the same variance, and so
the assumption must be true when the variable has 1 degree of freedom. Hence, we need not check the
sphericity assumption for noise because it has only two levels and therefore one degree of freedom. The
Mauchly tests for sphericity are not significant (p > 0.15) in the other two cases, so we could use p values
listed in the ANOVA table. However, I still prefer to use the corrected p values listed in the final part of the
output. The Greenhouse-Geisser (G-G) estimate of epsilon, ϵ̂, is 0.76 for the main effect of angle and 0.73
for the noise:angle interaction. The Huynh-Feldt (H-F) estimate of epsilon, ϵ̃, is 0.89 for the main effect
of angle and 0.84 for the noise:angle interaction. Occasionally, ϵ̃ > 1: In such situations it is standard
practice to set ϵ̃ = 1. Either the G-G or the H-F adjusted p values are acceptable, but I prefer to use
the H-F adjustment because it is slightly less conservative. So, the noise:angle interaction is significant,
F (2, 18) = 7.51, ϵ̃ = 0.84, p = 0.0072, as are the main effects of angle, F (2, 18) = 7.79, ϵ̃ = 0.89, p = 0.0054,
and noise, F (1, 9) = 15.69, p = 0.0033.

12.1.2 strength of association & effect size

Maxwell and Delaney (2004) provide the following equation for omega squared which expresses the variance
of an effect relative to the sum of the effect variance, error variance, and the variance due to subjects:

ω̂2 =
df effect(MS effect −MS effect×S )

SS effect + SS effect×S + SSS +MSS
(2)

Kirk (1995) showed that Cohen’s f can be calculated from ω̂2 with the following equation:

f̂ =

√√√√ ω̂2
effect

1− ω̂2
effect

(3)

The following code calculates association strength and effect size Equations 2 and 3.
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omega.sq.angle <- 2*(112711-14460) / (225422 + 260280 + 344423 + 38269)
omega.sq.noise <- 1*(234624-14950) / (234624 + 134551 + 344423 + 38269)
omega.sq.a_x_n <- 2*(93992-12522) / (187983 + 225402 + 344423 + 38269)
c(omega.sq.angle , omega.sq.noise, omega.sq.a_x_n)

## [1] 0.2263 0.2922 0.2047

cohens.f.angle <- sqrt(omega.sq.angle/(1-omega.sq.angle) )
cohens.f.noise <- sqrt(omega.sq.noise/(1-omega.sq.noise) )
cohens.f.noise <- sqrt(omega.sq.a_x_n/(1-omega.sq.a_x_n) )
c(cohens.f.angle , cohens.f.noise, omega.sq.a_x_n)

## [1] 0.5408 0.5073 0.2047

Association strength and effect size also can be calculated using commands in the effectsize package.
library(effectsize)
omega_squared(rt.aov.02)

## # Effect Size for ANOVA (Type III)
##
## Parameter | Omega2 (partial) | 95% CI
## ---------------------------------------------
## angle | 0.23 | [0.00, 1.00]
## noise | 0.29 | [0.00, 1.00]
## angle:noise | 0.20 | [0.00, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

However, note that Cohen’s f is calculated by using values of eta-squared, not omega-squared, in Eq 3:
eta_squared(rt.aov.02)

## # Effect Size for ANOVA (Type III)
##
## Parameter | Eta2 (partial) | 95% CI
## -------------------------------------------
## angle | 0.46 | [0.14, 1.00]
## noise | 0.64 | [0.23, 1.00]
## angle:noise | 0.45 | [0.13, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

cohens_f(rt.aov.02)

## # Effect Size for ANOVA (Type III)
##
## Parameter | Cohen's f (partial) | 95% CI
## -----------------------------------------------
## angle | 0.93 | [0.41, Inf]
## noise | 1.32 | [0.55, Inf]
## angle:noise | 0.91 | [0.39, Inf]
##
## - One-sided CIs: upper bound fixed at [Inf].
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Figure 1: Interaction plot of data in rt.mat.

12.1.3 simple main effects

The angle:noise interaction was significant, so we should examine the simple main effects. First we plot
the data to get an idea of what the interaction might mean. The following commands were used to create
Figure 1.

( tmp <- with(rt.long,tapply(rt,list(noise,angle),mean)) )

## a0 a4 a8
## absent 521.4 521.8 534.1
## present 511.7 642.3 798.5

absent.means <- tmp["absent",]
present.means <- tmp["present",]
x.angle <- c(0,4,8);
plot(x=c(0,4,8),absent.means,"b",ylim=c(450,800),ylab="RT",xlab="angle")
points(x=c(0,4,8),present.means,"b",pch=19)
legend(x=0,y=750,legend=c("absent","present"),pch=c(21,19))

It appears that the difference between the noise absent and present conditions increased with increasing
stimulus angle. Alternatively, we can say that the effect of angle appears to be larger in the noise present
condition than in the noise absent condition. I will evaluate this idea by conducting tests of the simple main
effect of angle at each level of noise.

In a two-way, between-subjects factorial design, simple main effects were evaluated by doing separate
one-way ANOVAs, but using MSresiduals from the overall analysis as the error term. However, for within-
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subjects designs it is better to use separate error terms for each analysis. The reason for preferring
to use the so-called local error term is that even slight deviations from sphericity can make the F too large
for some simple effects and too small for others (Maxwell and Delaney, 2004). Using the local error term
means that evaluating simple main effects is essentially identical to conducting a set of one-way, within-
subject ANOVAs. The following code illustrates how to conduct simple main effects of angle at each level
of noise.

aov.angle.absent <- aov_car(rt~angle+Error(subj/angle),data=subset(rt.long,noise=="absent"))
aov.angle.present <- aov_car(rt~angle+Error(subj/angle),data=subset(rt.long,noise=="present"))
# Hyunh-Feldt correction; pes == partial eta squared:
anova(aov.angle.absent,correction="HF",es="pes")

## Anova Table (Type 3 tests)
##
## Response: rt
## num Df den Df MSE F pes Pr(>F)
## angle 2 18 10460 0.05 0.00551 0.95

anova(aov.angle.present,correction="HF",es="pes")

## Anova Table (Type 3 tests)
##
## Response: rt
## num Df den Df MSE F pes Pr(>F)
## angle 2 18 16522 12.5 0.581 4e-04 ∗∗∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The simple main effect of angle when noise is present is significant, F (2, 18) = 12.5, p < .001, but not when
noise is absent, F ((2, 18) = 0.05, p = 0.95. Note that the same conclusion would be reached if we used the
G-G adjusted p values.

Finally, we could use the Bonferroni adjustment to maintain a familywise Type I error rate of .05 by
using a per-comparison Type I error rate of α = .05/2 = .025. Even with this new criterion, our conclusions
remain the same: the simple main effect of angle is significant when noise is present but not when it is
absent.

12.1.4 linear comparisons

The procedures for conducting linear comparisons among treatment levels are similar to those used in to
analyze data from one-way within-subject designs. First, we create our set of contrast weights. Next, we
use the weights to create composite scores for each subject. Finally, if our null hypothesis is not directional,
we use a t test to determine if the composite scores differ from zero.

The following code shows how to test the hypothesis that there is a significant linear trend of RT across
angle ignoring noise. Such an analysis is inappropriate in this case because the angle:noise interaction
is significant, but we continue for illustrative purposes. First I extract the data for the from the wide-format
data frame, rt.wide, and store the data in a matrix. Then I use the linear trend weights to create linear
trend scores for each subject. In what follows, note how my contrast includes six values, not three, and how
the values in my contrast correspond to the order of the columns in the data matrix.
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rt.mat <- as.matrix(rt.wide[,2:7])
rt.mat[1:2,]

## absent.a0 absent.a4 absent.a8 present.a0 present.a4 present.a8
## 1 657 446 461 671 474 903
## 2 450 448 484 284 562 585

lin.C <- c(-1,0,1,-1,0,1)
rt.lin <- rt.mat %*% lin.C
t.test(rt.lin)

##
## One Sample t-test
##
## data: rt.lin
## t = 3.5, df = 9, p-value = 0.007
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 104.9 494.1
## sample estimates:
## mean of x
## 299.5

The value of t is significant, so we reject the null hypothesis of no linear trend across angle ignoring the
effect of noise.

Now suppose we wanted to know if the linear trend across angle differed across levels of noise. This
question is equivalent to asking if the linear trend across angle interacts with noise. To answer this
question, we compute the difference between the linear trend in conditions when noise is present and the
linear trend when noise was absent. Therefore, the contrast weights needed to address this question are [(-1,
0, 1) - (-1, 0, 1)], or [-1, 0, 1, 1, 0, -1]:

myC <- c(-1,0,1,1,0,-1)
rt.lin.x.noise <- rt.mat %*% myC
t.test(rt.lin.x.noise)

##
## One Sample t-test
##
## data: rt.lin.x.noise
## t = -5.1, df = 9, p-value = 7e-04
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -396.8 -151.4
## sample estimates:
## mean of x
## -274.1

The contrast is significant, t(9) = −5.1, p < .001, so we conclude that the linear trend differs in the noise-
present and noise-absent conditions. This result is consistent1 with our previous ANOVA which found that
was a significant angle × noise.

1Although the two analyses yield results that are consistent, each analysis evaluates a different question. The significant
angle × noise interaction in the overall ANOVA evaluates a general hypothesis, namely that the effect of one variable depends
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Finally, we can evaluate the linear trend separately at each level of noise. The following code applies
linear trend weights separately to data in the noise-present and noise-absent conditions in the wide-format
data frame, rt.wide. The linear trend weights create linear trend scores for each subject, and t tests are
used to evaluate the null hypothesis that the linear trend is zero. The t test is significant when noise is
present, t(9) = 4.8, p < .001, but not when noise is absent, t(9) = 0.32, p = 0.75. Therefore, I reject the
null hypothesis of no linear trend in the noise-present condition but not in the noise-absent condition.

rt.mat[1,] # inspect column names

## absent.a0 absent.a4 absent.a8 present.a0 present.a4 present.a8
## 657 446 461 671 474 903

# note the contrast weights in next 2 lines:
rt.absent.lin <- rt.mat %*% c(-1,0,1,0,0,0)
rt.present.lin <- rt.mat %*% c(0,0,0,-1,0,1)
t.test(rt.absent.lin)

##
## One Sample t-test
##
## data: rt.absent.lin
## t = 0.32, df = 9, p-value = 0.8
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -77.93 103.33
## sample estimates:
## mean of x
## 12.7

t.test(rt.present.lin)

##
## One Sample t-test
##
## data: rt.present.lin
## t = 4.8, df = 9, p-value = 0.001
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 151.7 421.9
## sample estimates:
## mean of x
## 286.8

Previously we used a t test to evaluate the linear trend × noise interaction, but it is possible to use an
F test. The F test is a more general procedure than the t test which could be used in a situation where
noise had more than two levels, and so I will describe it here. First, I store the linear trend scores for the
noise-present and noise-absent conditions in the numeric variable linTrend. Then I create the factors sid
and nz and save everything in the data frame linTrend.df.

on the level of the other variable. The current test evaluates the specific hypothesis that the linear trend (across angle) differs
across noise levels.
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N <- length(rt.absent.lin) # number of subjects
linTrend <- c(rt.present.lin,rt.absent.lin)
nz <- as.factor(x=rep(c("present","absent"),each=N))
sid <- factor(x=rep(1:N,times=2),label="s")
linTrend.df <- data.frame(sid,nz,linTrend)
summary(linTrend.df)

## sid nz linTrend
## s1 :2 absent :10 Min. :-196
## s2 :2 present:10 1st Qu.: 19
## s3 :2 Median : 104
## s4 :2 Mean : 150
## s5 :2 3rd Qu.: 249
## s6 :2 Max. : 575
## (Other):8

Next, I conduct a within-subjects ANOVA on linTrend. Note that no Mauchly test was performed: that
test is not needed here because the within-subject effect being evaluated has a single degree of freedom.

options(contrasts=c("contr.sum","contr.poly"))
linTrend.aov.01 <- aov_car(linTrend~nz+Error(sid/nz),data=linTrend.df)
summary(linTrend.aov.01)

##
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 448501 1 333077 9 12.1 0.00693 ∗∗
## nz 375654 1 132496 9 25.5 0.00069 ∗∗∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The effect of nz is significant, F (1, 9) = 25.5, p = .007. What does this effect mean? It means that we
reject the null hypothesis that the composite scores – i.e., the linear trend – are the same at both levels
of noise in favor of the alternative hypothesis that the composite scores differed in the noise-present and
noise-absent conditions. In other words, there was a significant linear trend x noise interaction. Also note
that the F observed here equals the squared t value obtained in the previous t test (t2 = (−5.051)2 = 25.51):
these tests are evaluating the same hypotheses, and therefore the statistics are simple transforms of each
other. Also note that the intercept term is significant, F (1, 9) = 12.1, p = 0.0069. When we use sum-to-zero
coding for our effects, the intercept corresponds to the grand mean, and therefore this F test evaluates the
null hypothesis that the grand mean of the scores is zero. Normally such a test is not interesting, but in
this case the test is informative: it tells us that the average linear trend score differs significantly from zero.
Note again that the F value for the intercept is the squared t value obtained in our earlier test of this same
hypothesis (t2 = 3.4812 = 12.1). If we get the same values as our t tests, why would we ever want to use an
F test? The F test is useful in situations where the second variable has more than two levels. In the current
situation, for example, it is not clear how a t test could be used to evaluate a trend x noise interaction if
noise had more than two levels. In fact, it is not possible to test for such an interaction using a single t test,
but it is possible to perform the F test to see if the trend (or other linear contrast) varies across n levels of
the other within-subject variable.

Finally, it is worth noting that all of these contrasts can be performed with commands in the emmeans
package:
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library(emmeans)
rt.emm <- emmeans(rt.aov.02,specs="angle")
lin.C <- c(-1,0,1) # trend weights

# linear trend ignoring noise
contrast(rt.emm,method=list(linear=lin.C))

## contrast estimate SE df t.ratio p.value
## linear 150 43 9 3.481 0.0069
##
## Results are averaged over the levels of: noise

# linear trend x noise interaction:
rt.emm.2 <- emmeans(rt.aov.02,specs="angle",by="noise")
contrast(rt.emm.2,interaction=list(angle=list(lin.C),noise=list(c(-1,1))),by=NULL)

## angle_custom noise_custom estimate SE df t.ratio p.value
## c(-1, 0, 1) c(-1, 1) 274 54.3 9 5.051 0.0007

# linear trend separately for each noise
contrast(rt.emm.2,method=list(linear=lin.C))

## noise = absent:
## contrast estimate SE df t.ratio p.value
## linear 12.7 40.1 9 0.317 0.7585
##
## noise = present:
## contrast estimate SE df t.ratio p.value
## linear 286.8 59.7 9 4.801 0.0010

12.1.5 alternative analyses with lmer & lme

In this section I illustrate how to analyze the RT data with lmer and lme. These routines, which are in
the lme4 and nlme packages, respectively, estimate the parameters of linear mixed models using Restricted
Maximum Likelihood (i.e., REML, a variant of the maximum likelihood method). Detailed descriptions of
the algorithms used by these commands have been published elsewhere (Bates et al., 2015; Pinheiro and
Bates, 2000). For our purposes, it is important to note that the methods differ in a fundamental way from
those used by ANOVA, and therefore the results obtained by these methods may differ from those obtained
by ANOVA. For example, there is debate about the proper way of calculating the degrees of freedom used
in F tests of fixed effects (Bates, 2006). Given these issues, why would we consider using these procedures?
One reason is that lmer and lme can be used in situations that are difficult to analyze with ANOVA. For
example, mixed model routines work on unbalanced data whereas ANOVA either throws out cases with
missing data (e.g., aov_car) or fails entirely (e.g., aov). In addition, both lmer and lme provide much
greater flexibility for modelling the random components of mixed models.

The following code uses lmer to fit a mixed model to the RT data and evaluates the fixed effects with F
tests. Note the denominator degrees of freedom, which differ considerably from the values in the ANOVA
computed by aov_car.

# using lmer:
library(lmerTest)
rt.lmer.01 <- lmer(rt~angle*noise+(1|subj),data=rt.long)
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anova(rt.lmer.01) # assumes sphericity

## Type III Analysis of Variance Table with Satterthwaite 's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## angle 225422 112711 2 45 8.18 0.00093 ∗∗∗
## noise 234575 234575 1 45 17.02 0.00016 ∗∗∗
## angle:noise 187983 93992 2 45 6.82 0.00259 ∗∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The F tests assume sphericity. We can evaluate the two-way interaction by removing it from the model
and evaluating the change in deviance (i.e., the goodness-of-fit) with a chi-square test. The chi-square test
(which does not assume sphericity) is significant and suggests the interaction should not be removed from
the model. Furthermore, the fact that the interaction is significant indicates that we should not remove the
two main effects (which are marginal to the interaction).

rt.lmer.00 <- lmer(rt~angle+noise+(1|subj),data=rt.long)
anova(rt.lmer.00,rt.lmer.01)

## Data: rt.long
## Models:
## rt.lmer.00: rt ~ angle + noise + (1 | subj)
## rt.lmer.01: rt ~ angle ∗ noise + (1 | subj)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## rt.lmer.00 6 771 784 -380 759
## rt.lmer.01 8 762 779 -373 746 13.2 2 0.0013 ∗∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

Alternatively, we could assume that our data are not spherical and evaluate the fixed effects with a conser-
vative F test. The fact that the tests are significant again suggests that the effects should not be removed
from the model.

# conservative F tests:
N <- 10 # 10 subjects
F.angle <- 8.18
F.angle.x.noise <- 6.82
# conservative F tests for angle and angle x noise:
1-pf(F.angle,1,N) # p value for angle

## [1] 0.01695

1-pf(F.angle.x.noise,1,N) # p value for angle x noise

## [1] 0.02597

Association strength and effect size for the fixed effects can be calculated using commands in effectsize.

library(effectsize)
omega_squared(rt.lmer.01)
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## # Effect Size for ANOVA (Type III)
##
## Parameter | Omega2 (partial) | 95% CI
## ---------------------------------------------
## angle | 0.23 | [0.06, 1.00]
## noise | 0.25 | [0.09, 1.00]
## angle:noise | 0.20 | [0.04, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

cohens_f(rt.lmer.01)

## # Effect Size for ANOVA (Type III)
##
## Parameter | Cohen's f (partial) | 95% CI
## -----------------------------------------------
## angle | 0.60 | [0.31, Inf]
## noise | 0.61 | [0.34, Inf]
## angle:noise | 0.55 | [0.25, Inf]
##
## - One-sided CIs: upper bound fixed at [Inf].

Finally, the random effect of subject can be evaluated with ranova and the variance component can be
calculated with VarCorr:

# random components
ranova(rt.lmer.01) # anova-like table

## ANOVA-like table for random-effects: Single term deletions
##
## Model:
## rt ~ angle + noise + (1 | subj) + angle:noise
## npar logLik AIC LRT Df Pr(>Chisq)
## <none> 8 -350 715
## (1 | subj) 7 -352 718 4.81 1 0.028 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

# variance components
print(VarCorr(rt.lmer.01),comp=c("Variance","Std.Dev."))

## Groups Name Variance Std.Dev.
## subj (Intercept) 4081 63.9
## Residual 13783 117.4

# association strength
library(performance)
icc(rt.lmer.01)

## # Intraclass Correlation Coefficient
##
## Adjusted ICC: 0.228
## Unadjusted ICC: 0.141
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Here we analyze the RT data using lme in the nlme. First, we create two mixed models with identical fixed
and random effects, but differ in terms of the assumed correlations among the within-subject measures. The
first model assumes that the within-subject measures are independent. The second model assumes compound
symmetry: residuals in the levels of the within subject factors are assumed to have the same variance and
the same covariance. The third model does not assume compound symmetry: residual variances, but not
covariances, are assumed to be constant across levels of within-subject variables. Another way of stating the
difference is that the first model assumes that the correlations between within-subject measures is zero, the
second model assumes that the correlations are non-zero but constant, and the third model assumes that
the correlations vary.
# using lme in nlme
library(nlme)
# assumes independence:
rt.lme.01 <- lme(rt~angle*noise,random=~1|subj,

data=rt.long)
# assumes sphericity:
rt.lme.02 <- lme(rt~angle*noise,random=~1|subj,

data=rt.long,
correlation=corCompSymm(value=0.3,form=~1|subj))

# does not assume sphericity:
rt.lme.03 <- lme(rt~angle*noise,random=~1|subj,

data=rt.long,
correlation=corSymm(form=~1|subj))

# no significant difference in fit:
anova(rt.lme.01,rt.lme.02,rt.lme.03)

## Model df AIC BIC logLik Test L.Ratio p-value
## rt.lme.01 1 8 715.5 731.4 -349.7
## rt.lme.02 2 9 717.5 735.4 -349.7 1 vs 2 0.00 0.9999
## rt.lme.03 3 23 728.3 774.0 -341.1 2 vs 3 17.23 0.2444

Goodness-of-fit does not differ significantly across models, and therefore we can use the simpler models.
Note that there is no difference between the first and second models, even though the second model uses one
more degree of freedom (to estimate the correlation between within-subject measures). Next, we evaluate
the fixed effects and calculate association strength and effect size for the first model. Identical results (not
shown) are obtained from the second model
# fixed effects for model 1
anova(rt.lme.01)

## numDF denDF F-value p-value
## (Intercept) 1 45 542.6 <.0001
## angle 2 45 8.2 0.0009
## noise 1 45 17.0 0.0002
## angle:noise 2 45 6.8 0.0026

omega_squared(rt.lme.01)

## # Effect Size for ANOVA
##
## Parameter | Omega2 (partial) | 95% CI
## ---------------------------------------------
## angle | 0.23 | [0.06, 1.00]
## noise | 0.25 | [0.09, 1.00]
## angle:noise | 0.20 | [0.04, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].
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cohens_f(rt.lme.01)

## # Effect Size for ANOVA
##
## Parameter | Cohen's f (partial) | 95% CI
## -----------------------------------------------
## angle | 0.60 | [0.31, Inf]
## noise | 0.62 | [0.34, Inf]
## angle:noise | 0.55 | [0.25, Inf]
##
## - One-sided CIs: upper bound fixed at [Inf].

Finally, we estimate the variance components. Here we do see a difference between the model that assumed
independence and the model that assumed compound symmetry. So allowing the within-subject variables to
be correlated did not change our estimates of the fixed effects, but did change the magnitude of the random
effect (i.e., subj).

# variance components (independence)
print(VarCorr(rt.lme.01),comp=c("Variance","Std.Dev."))

## subj = pdLogChol(1)
## Variance StdDev
## (Intercept) 4081 63.89
## Residual 13783 117.40

( icc.subj <- 4081/(4081+13783) )

## [1] 0.2284

# variance components (compound symmetry)
print(VarCorr(rt.lme.02),comp=c("Variance","Std.Dev."))

## subj = pdLogChol(1)
## Variance StdDev
## (Intercept) 1142 33.79
## Residual 16722 129.31

( icc.subj <- 1142/(1142+16722) )

## [1] 0.06393

12.2 Split plot designs

Some experiments use mixtures of within- and between-subjects factors. Such designs often are called split
plot designs. Maxwell and Delaney (2004) illustrate a split-plot ANOVA with data from a hypothetical
experiment that measured reaction time in groups of younger and older adults. Each subject participated
in three conditions in which the visual stimuli were presented at different angles. In this design, group is
the between-subject variable (of age) and stimulus angle is a within-subjects variable. I will use the same
story, but I’ve created my own fake data:
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load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/rtVisual.rda"))
sapply(rtVisual.wide,class)

## subj group a1 a2 a3
## "factor" "factor" "numeric" "numeric" "numeric"

summary(rtVisual)

## subj group angle rt
## s1 : 3 young:18 a1:12 Min. :370
## s2 : 3 old :18 a2:12 1st Qu.:448
## s3 : 3 a3:12 Median :510
## s4 : 3 Mean :517
## s5 : 3 3rd Qu.:572
## s6 : 3 Max. :720
## (Other):18

The file contains two data frames: rtVisual and rtVisual.wide. Both data frames contain the factors
subj and group. The long-format data frame rtVisual contains the factor angle and the numeric variable
rt. Note that group and angle are between- and within-subjects variables, respectively. The wide-format
data frame, rtVisual.wide, stores the dependent variable in three numeric variable, a1, a2, and a3. In the
next block of code, I use the long-format data frame to evaluate the data with a split-plot ANOVA:

rtAge.aov.01 <- aov(rt ~ group*angle + Error(subj/angle),data=rtVisual)
summary(rtAge.aov.01)

##
## Error: subj
## Df Sum Sq Mean Sq F value Pr(>F)
## group 1 16044 16044 1.6 0.23
## Residuals 10 100222 10022
##
## Error: subj:angle
## Df Sum Sq Mean Sq F value Pr(>F)
## angle 2 28850 14425 2.52 0.105
## group:angle 2 50772 25386 4.44 0.025 ∗
## Residuals 20 114311 5716
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The ANOVA table shows the F and p values for the main effects of group and angle, and the group:angle
interaction. Examination of the table shows that the effects of group and angle are evaluated with different
error terms. The aov command assumes that the between- and within-subjects variables are fixed, and uses
the appropriate error term to generate unbiased F tests. However, the p values were calculated assuming
that the variance-covariance matrix of the within-subject variables are spherical. The following command
adjusts the p values for deviations from sphericity:

library(afex)
options(contrasts=c("contr.sum","contr.poly"))
rtAge.aov.02 <- aov_car(rt ~ group*angle + Error(subj/angle),data=rtVisual)
summary(rtAge.aov.02)

##
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## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 9610000 1 100222 10 958.87 2.9e-11 ∗∗∗
## group 16044 1 100222 10 1.60 0.234
## angle 28850 2 114311 20 2.52 0.105
## group:angle 50772 2 114311 20 4.44 0.025 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
##
##
## Mauchly Tests for Sphericity
##
## Test statistic p-value
## angle 0.354 0.00933
## group:angle 0.354 0.00933
##
##
## Greenhouse -Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
##
## GG eps Pr(>F[GG])
## angle 0.607 0.135
## group:angle 0.607 0.051 .
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
##
## HF eps Pr(>F[HF])
## angle 0.6468 0.13155
## group:angle 0.6468 0.04726

The second part of the output contains the results of the Mauchly tests for sphericity: Note that a test
is done for the interaction as well as the within-subjects variable. In general, the sphericity assumption
applies to within-subjects factors and all interactions that contain within-subjects factors. The third part
of the output shows the G-G and H-F adjusted p values. The Mauchly test is significant, so I will use H-F
adjusted p values. There is a significant group:angle interaction, F (2, 20) = 4.44, ϵ̃ = 0.65, p = 0.047, but
the main effects of group and angle are not significant.

Let’s think about what the different components of the ANOVA table actually mean. First consider the
between-subjects main effect of group. To illustrate what this main effect represents, I am going to do a
one-way between-subjects analysis on the averaged within-subject scores:

rt.mat <- rtVisual.wide[,3:5] # extract rt measures
rtVisual.wide$rtAvg <- rowMeans(rt.mat) # calculate average
summary(aov(rtAvg~group,data=rtVisual.wide))

## Df Sum Sq Mean Sq F value Pr(>F)
## group 1 5348 5348 1.6 0.23
## Residuals 10 33407 3341

Notice that the F and p values for the effect of group are the same (to within rounding error) as the values
listed in the split-plot ANOVA table. In fact, the two analyses of group are equivalent: the analysis of the
between-subjects factor in a split-plot design is the same as a between-subjects ANOVA on the average score
for each subject. The sums of squares and means squares for group and residuals listed in the two ANOVA
tables differ because different numbers of data points are analyzed in the two cases, but the ratios of the
mean squares are the same. One more thing: if the evaluation of the between-subjects variable is equivalent
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to a one-way, between-subjects ANOVA, then it should not matter if we have different n in each level of
the between-subject variable. And, indeed, it does not matter: having unequal n on the between-subjects
variable does not cause significant problems with the analysis.

Next, let’s consider the error term that is used to evaluate the main effect of the within-subjects factor.
As we learned in previous sections, in the case where both variables are within-subject factors each effect is
evaluated with an error term that corresponds to the interaction of that effect with subjects: A is evaluated
with A × S, B is evaluated with B × S, and A × B is evaluated with A × B × S. In the current case, if
B is the within-subjects variable, then it is evaluated with B × S/A, which is the mean square interaction
of B and subjects nested within A. This error term is equivalent to the weighted average of the values of
MSB×S at each level of the between-subjects variable, A. The following code calculates the ANOVA for the
within-subject variable, angle, separately for each group:

rt.young <- aov(rt~angle+Error(subj/angle),data=subset(rtVisual,group=="young"))
rt.old <- aov(rt~angle+Error(subj/angle),data=subset(rtVisual,group=="old"))

Here are the ANOVA tables (I’ve deleted the other parts of the output):

summary(rt.young)[[2]]

## Df Sum Sq Mean Sq F value Pr(>F)
## angle 2 72078 36039 9.71 0.0045 ∗∗
## Residuals 10 37122 3712
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

summary(rt.old)[[2]]

## Df Sum Sq Mean Sq F value Pr(>F)
## angle 2 7544 3772 0.49 0.63
## Residuals 10 77189 7719

Notice that the sum of squares for the error terms in the two analyses are 37122 and 77189, and that the
sum of these values, 114311, equals the sum of squares for angle's error term in the original split-plot
analysis. Also note that the average of the two mean square values, (3712 + 7719)/2 = 5716, is the same as
the mean square of the error term in the original analysis. Hence, the error term that is used to evaluate
the within-subjects variable in a split-plot analysis can be thought of as the average of the error terms in a
series of within-subjects ANOVAs.

Finally, we can use the effectsize package to calculate association strength and effect size for the fixed
effects.
library(effectsize)
# eta_squared(rtAge.aov.02)
omega_squared(rtAge.aov.02)

## # Effect Size for ANOVA (Type III)
##
## Parameter | Omega2 (partial) | 95% CI
## ---------------------------------------------
## group | 0.05 | [0.00, 1.00]
## angle | 0.07 | [0.00, 1.00]
## group:angle | 0.14 | [0.00, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].
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cohens_f(rtAge.aov.02)

## # Effect Size for ANOVA (Type III)
##
## Parameter | Cohen's f (partial) | 95% CI
## -----------------------------------------------
## group | 0.40 | [0.00, Inf]
## angle | 0.50 | [0.00, Inf]
## group:angle | 0.67 | [0.17, Inf]
##
## - One-sided CIs: upper bound fixed at [Inf].

12.2.1 simple main effects

Our previous analysis found a significant group:angle interaction, so we should examine simple main
effects. We start by examining the simple main effect of the between-subject factor, group at each level
of the within-subject factor, angle. Each analysis uses a separate error term calculated on the particular
subset of data being examined, and therefore is equivalent to a one-way between-subjects ANOVA.

levels(rtVisual$angle)

## [1] "a1" "a2" "a3"

summary(aov(rt~1+group,data=subset(rtVisual,angle=="a1")))

## Df Sum Sq Mean Sq F value Pr(>F)
## group 1 42008 42008 11.3 0.0072 ∗∗
## Residuals 10 37217 3722
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

summary(aov(rt~1+group,data=subset(rtVisual,angle=="a2")))

## Df Sum Sq Mean Sq F value Pr(>F)
## group 1 10800 10800 0.84 0.38
## Residuals 10 128100 12810

summary(aov(rt~1+group,data=subset(rtVisual,angle=="a3")))

## Df Sum Sq Mean Sq F value Pr(>F)
## group 1 14008 14008 2.85 0.12
## Residuals 10 49217 4922

The analyses indicate that the simple main effect of age group is significant only in the first level of angle,
F (1, 10) = 11.3, p = 0.007.

We can also look at the simple main effect of the within-subject variable at each level of the between
subject variable. Notice that each analysis is simply a one-way within-subjects ANOVA, and that we use
a separate error term for each analysis:
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anova(aov_car(rt~angle+Error(subj/angle),
correction="HF",
es="pes",
data=subset(rtVisual,group=="young")))

## Anova Table (Type 3 tests)
##
## Response: rt
## num Df den Df MSE F ges Pr(>F)
## angle 1.27 6.36 5833 9.71 0.615 0.016 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

anova(aov_car(rt~angle+Error(subj/angle),
correction="HF",
es="pes",
data=subset(rtVisual,group=="old")))

## Anova Table (Type 3 tests)
##
## Response: rt
## num Df den Df MSE F ges Pr(>F)
## angle 1.08 5.39 14318 0.49 0.0426 0.53

The simple main effect of angle is significant in the young group, even if we use adjusted p values. Our
analyses of the simple main effects of the within-subject variable used individual error terms, but it is
possible to use a pooled error term (i.e., the within-subject error term from the overall analysis). This
option is the one taken by software packages, and it provides greater power. However, it depends on the
assumption that the error variance is the same at each level of the between-subjects variable.

12.2.2 linear comparisons (between-subjects variable)

Previously it was shown that the evaluation of the between-subject effect in a split-plot design is the same
as performing a standard between-subject ANOVA on the average of the dependent variables. We can take
advantage of this fact when conducting linear comparisons among levels on the between-subjects variable.
First, we compute the average score for each subject by averaging across all levels of the within-subject
variable. These mean scores can then be analyzed with a standard one-way between-subjects ANOVA.
Furthermore, the standard procedures for conducting linear comparisons among levels on between-subjects
factors can be used without modification. The current example has only two levels on the between-subject
variable, so a linear contrast is not particularly interesting. Nevertheless, the following code shows how such
a comparison is done with emmeans:

library(emmeans)
rtAge.emm <- emmeans(rtAge.aov.02,specs="group")
contrast(rtAge.emm,method="pairwise") # ignores angle

## contrast estimate SE df t.ratio p.value
## young - old -42.2 33.4 10 -1.265 0.2345
##
## Results are averaged over the levels of: angle

# compare age at each angle:
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rtAge.emm.2 <- emmeans(rtAge.aov.02,specs="group",by="angle")
contrast(rtAge.emm.2,method="pairwise")

## angle = a1:
## contrast estimate SE df t.ratio p.value
## young - old -118.3 35.2 10 -3.360 0.0072
##
## angle = a2:
## contrast estimate SE df t.ratio p.value
## young - old 60.0 65.3 10 0.918 0.3801
##
## angle = a3:
## contrast estimate SE df t.ratio p.value
## young - old -68.3 40.5 10 -1.687 0.1225

12.2.3 linear comparisons (within-subjects variable)

Linear comparisons among levels of the within-subjects variable are done using procedures that are similar
to the ones used in standard within-subjects design2. First, we construct a set of appropriate contrast
weights. Next, we use the weights to create a composite score for each subject. In the following R code, I
save the composite scores in the data frame myData, but this step is not necessary:

sapply(rtVisual.wide,class)

## subj group a1 a2 a3 rtAvg
## "factor" "factor" "numeric" "numeric" "numeric" "numeric"

rt.mat<-as.matrix(rtVisual.wide[,3:5] )
lin.C <- c(-1,0,1)
rtVisual.wide$linTrend <- rt.mat %*% lin.C
rtVisual.wide[1:3,]

## subj group a1 a2 a3 rtAvg linTrend
## 1 s1 young 500 470 510 493.3 10
## 2 s2 young 410 570 430 470.0 20
## 3 s3 young 420 630 400 483.3 -20

To determine if the value of the contrast differs across groups – i.e., to see if there is a contrast × group
interaction – I submit the composite scores to a between-groups t test:

t.test(linTrend~group,data=rtVisual.wide)

##
## Welch Two Sample t-test
##
## data: linTrend by group
## t = 1.8, df = 10, p-value = 0.1
## alternative hypothesis: true difference in means between group young and group old is not

equal to 0
## 95 percent confidence interval:
## -12.63 112.63

2The procedure that I am describing is taken directly from Keppel and Wickens (2004, p. 453-456).
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## sample estimates:
## mean in group young mean in group old
## 5 -45

In this case, the test is not significant and therefore I do not reject the null hypothesis that the composite
scores do not differ between groups. To test if the contrast is significant ignoring group, I do a t test on all
of the scores to see if they differ from zero.

t.test(rtVisual.wide$linTrend)

##
## One Sample t-test
##
## data: rtVisual.wide$linTrend
## t = -1.3, df = 11, p-value = 0.2
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -53.84 13.84
## sample estimates:
## mean of x
## -20

The test is not significant, so I fail to reject the null hypothesis that the contrast scores are zero. It is
important to realize that this t test assumes that the group × contrast interaction is zero. Suppose we are
unwilling to make that assumption: How do we evaluate the contrast while at the same time controlling for
a (possibly non-significant) interaction? A simple way of doing this test is to use a one-way between-subjects
ANOVA on the composite scores and evaluate the intercept:

options(contrasts=c("contr.sum","contr.poly"))
lin.scores.aov <- aov(linTrend~group,data=rtVisual.wide)
summary(lin.scores.aov,intercept=T)

## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 4800 4800 2.03 0.19
## group 1 7500 7500 3.16 0.11
## Residuals 10 23700 2370

When we use sum-to-zero coding for our effects, the intercept corresponds to the grand mean of the
scores, and the F test evaluates the null hypothesis that the grand mean is zero. Hence, this F test is
similar to the t test that we used to determine if the population mean of the composite was zero. There
is, however, a subtle difference between the tests: the F test, but not the t test, uses an error term that
does not include variation associated with the group:contrast interaction3. In this case, the test is not
significant, F (1, 10) = 2.03, p = 0.19, so we do not reject the null hypothesis that the linear trend is zero.
Note, by the way, that the error term in the F test has 10 degrees of freedom, whereas the error term in
the t test had 11 degrees of freedom. The difference is due to the inclusion of the group factor in the F test
but not the t test. The following code illustrates how to repeat these linear contrasts using emmeans:

3One way of proving that this is true is to recalculate F for the intercept using an error term that is based on sum of the
variation assigned to the group and residuals terms: the combined sum-of-squares is 7500 + 23700 = 31200 and the resulting
mean square is 31200/11 = 2836. Using this mean square value, the F for intercept is 4800/2836 = 1.69. As expected, this new
F value equals the squared value of t computed previously (t2 = (−1.301)2 = 1.69). Hence, this new F test is equivalent to the
t test.
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library(emmeans)
# create aov_car object:
rtAge.aov.10 <- aov_car(rt ~ group*angle + Error(subj/angle),data=rtVisual)
linTrendWeights <- c(-1,0,1)

# linear trend ignoring group
angle.emm <- emmeans(rtAge.aov.10,specs="angle")
contrast(angle.emm,method=list(linTrendWeights))

## contrast estimate SE df t.ratio p.value
## c(-1, 0, 1) -20 14.1 10 -1.423 0.1851
##
## Results are averaged over the levels of: group

# linear trend for each group
angle.emm.2 <- emmeans(rtAge.aov.10,specs="angle",by="group")
contrast(angle.emm.2,method=list(linTrendWeights))

## group = young:
## contrast estimate SE df t.ratio p.value
## c(-1, 0, 1) 5 19.9 10 0.252 0.8065
##
## group = old:
## contrast estimate SE df t.ratio p.value
## c(-1, 0, 1) -45 19.9 10 -2.264 0.0470

# linear trend x group interaction
contrast(angle.emm.2,interaction=c("poly","consec"),by=NULL)

## angle_poly group_consec estimate SE df t.ratio p.value
## linear old - young -50 28.1 10 -1.779 0.1056
## quadratic old - young 307 143.2 10 2.142 0.0578

12.2.4 split plot analysis with lmer

In this section we analyze the reaction time data first with lmer and then with lme. First we analyze the
fixed effects:

# fixed effects:
library(lmerTest)
library(effectsize)
rtAge.lmer.01 <- lmer(rt ~ group*angle + (1|subj),data=rtVisual)
anova(rtAge.lmer.01) # assumes sphericity

## Type III Analysis of Variance Table with Satterthwaite 's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## group 9153 9153 1 10 1.60 0.234
## angle 28850 14425 2 20 2.52 0.105
## group:angle 50772 25386 2 20 4.44 0.025 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
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omega_squared(rtAge.lmer.01)

## # Effect Size for ANOVA (Type III)
##
## Parameter | Omega2 (partial) | 95% CI
## ---------------------------------------------
## group | 0.05 | [0.00, 1.00]
## angle | 0.12 | [0.00, 1.00]
## group:angle | 0.23 | [0.00, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

cohens_f(rtAge.lmer.01)

## # Effect Size for ANOVA (Type III)
##
## Parameter | Cohen's f (partial) | 95% CI
## -----------------------------------------------
## group | 0.40 | [0.00, Inf]
## angle | 0.50 | [0.00, Inf]
## group:angle | 0.67 | [0.17, Inf]
##
## - One-sided CIs: upper bound fixed at [Inf].

Next we analyze the random effect of subjects:

ranova(rtAge.lmer.01)

## ANOVA-like table for random-effects: Single term deletions
##
## Model:
## rt ~ group + angle + (1 | subj) + group:angle
## npar logLik AIC LRT Df Pr(>Chisq)
## <none> 8 -185 386
## (1 | subj) 7 -185 385 1.11 1 0.29

print(VarCorr(rtAge.lmer.01),comp=c("Variance","Std.Dev."))

## Groups Name Variance Std.Dev.
## subj (Intercept) 1436 37.9
## Residual 5716 75.6

library(performance)
icc(rtAge.lmer.01) # intraclass correlation

## # Intraclass Correlation Coefficient
##
## Adjusted ICC: 0.201
## Unadjusted ICC: 0.145

Here we repeat the analysis with lme with a model that uses a compound symmetric structure for the
within-subject residuals. First we analyze the fixed effects:
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library(nlme)
rtAge.lme.01 <- lme(rt ~ group*angle,

random=~1|subj,
data=rtVisual,
correlation=corCompSymm(value=0.3,form=~1|subj))

# fixed effects:
anova(rtAge.lme.01)

## numDF denDF F-value p-value
## (Intercept) 1 20 958.9 <.0001
## group 1 10 1.6 0.2345
## angle 2 20 2.5 0.1053
## group:angle 2 20 4.4 0.0253

omega_squared(rtAge.lme.01)

## # Effect Size for ANOVA
##
## Parameter | Omega2 (partial) | 95% CI
## ---------------------------------------------
## group | 0.05 | [0.00, 1.00]
## angle | 0.12 | [0.00, 1.00]
## group:angle | 0.23 | [0.00, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

cohens_f(rtAge.lme.01)

## # Effect Size for ANOVA
##
## Parameter | Cohen's f (partial) | 95% CI
## -----------------------------------------------
## group | 0.40 | [0.00, Inf]
## angle | 0.50 | [0.00, Inf]
## group:angle | 0.67 | [0.17, Inf]
##
## - One-sided CIs: upper bound fixed at [Inf].

And now we examine the random effect of subjects:

print(VarCorr(rtAge.lme.01),comp=c("Variance","Std.Dev."))

## subj = pdLogChol(1)
## Variance StdDev
## (Intercept) 554 23.54
## Residual 6597 81.22

554/(554+6597) # small intraclass correlation

## [1] 0.07747
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The fixed-effects results from lmer and lme are very similar, but the random results differ slightly. In
particular, the variance component for subjects is smaller in the lme analysis. This difference is due to the
fact that lmer assumes that the residuals on the within-subject factor are independent, whereas the model
that we used with lme allowed them to be correlated. If we forced lme to assume independence, then the
variance components are the same as those obtained with lmer:

## subj = pdLogChol(1)
## Variance StdDev
## (Intercept) 1436 37.89
## Residual 5716 75.60

Finally, we examine the residuals of our models to check the normality assumption. The shapiro tests
are not significant, and the qq plots looks fine (Figure 2).

shapiro.test(residuals(rtAge.lmer.01))

##
## Shapiro-Wilk normality test
##
## data: residuals(rtAge.lmer.01)
## W = 0.99, p-value = 1

shapiro.test(residuals(rtAge.lme.01))

##
## Shapiro-Wilk normality test
##
## data: residuals(rtAge.lme.01)
## W = 0.99, p-value = 1
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Figure 2: Residuals from split-plot mixed model analyses.
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