
Bennett, PJ PSYCH 710 Chapter 11

Notes on Maxwell & Delaney
PSYCH 710

November 28, 2023

11 single-factor within-subject designs
The ideas of blocking and the analysis of covariance were discussed in Chapter 9. By
explicitly incorporating individual differences among subjects into the design and analysis of
experiments, blocking and ancova can significantly reduce error variance and, consequently,
increase the power of our statistical tests. One can think of within-subjects designs as
the ultimate extension of the blocking approach: each block consists of a single subject. If
certain assumptions are met, this type of design can significantly increase the sensitivity
of an experiment.

Up to now we have discussed experimental designs in which different treatments have
been administered to different groups of subjects. Such designs are called between-subjects
designs. In a within-subject design, each subject receives all treatments. This type of
design is sometimes referred to as a repeated-measures design, because multiple measures
are obtained on each subject. However, some statisticians prefer to use repeated-measures
to refer only to designs in which the same dependent measure is taken at multiple times.

There are, of course, a wide range of within-subjects experimental designs. I will focus
on designs in which the multiple measures obtained from each subject are all of the same
type. I will not address designs that obtain measures that differ qualitatively. For example,
we could imagine a situation where each subject provides dependent measures of response
time and response accuracy in a visual detection task. Such data should be analyzed using
a multivariate approach described in chapters 13 and 14 in Maxwell and Delaney (2004),
and will not be considered here.

The basic approach we will take to analyze within-subject data is to treat subjects
as an experimental factor. However, there are several aspects of within-subjects designs
that make the analysis more difficult. The first is that, in most within-subject designs,
there is only one observation per cell (i.e., subject-treatment combination). That is to say,
each subject is tested once, and only once, in each experimental condition. This means
that we cannot measure “within-cell” error as we did in factorial experiments. The second
distinguishing characteristic of this design is that the subjects factor is a random factor.
Most experimental treatments are fixed factors: if the experiment was repeated, we would
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use the same levels on the experimental variables. Subjects, however, is a random factor: If
the experiment was repeated, we would use different “levels” on the subjects factor (i.e., we
would get different subjects). A random factor adds variability to our measurements and,
as we shall see, alters the analysis. Finally, unlike in previous designs, the observations in
within-subjects designs are correlated, not independent. In other words, the residuals of
our model are likely to have structure, and such structure will affect our analysis.

One more thing. Traditional methods for analyzing within-subject designs — the meth-
ods described here — are applicable only to balanced designs. In some ways, this is a major
limitation of this approach. For example, the requirement of balanced data means that
we must discard all of the data from a subject even if we lack a measurement in only one
condition. Nevertheless, all of the following analyses assume that the design is balanced.
Also, we will only consider designs with a single, fixed within-subject factor.

11.1 linear models
We start with the model

Yij = µ+ αj + πi + (πα)ij + ϵij (1)

where Yij is the score from subject i in condition j, µ is the intercept, αj is the effect
associated with condition j, πi is the effect associated with subject i, (πα)ij is the effect
of the interaction between subject i and condition j, and ϵij is the error for subject i in
condition j.

We have a problem. The model in Equation 1 has too many parameters. Consider an
experiment that has n = 8 subjects and a = 4 treatments for a total of 32 observations.
Equation 1 includes an intercept (i.e., µ), 3 = a − 1 treatment effects, 7 = n − 1 subject
effects, and 21 = (a−1)(n−1) interaction effects, which add up to a total of 1+3+7+21 = 32
free parameters, which equals the number of observations. Therefore, the error terms in
Equation 1 will be zero. The problem is that we have included an interaction term in our
model, but there is no way to estimate that parameter from our data. Stated another way,
there is no way to determine if the difference between the observation in each cell and the
prediction based on the treatment and subject effects is due to an interaction or error.
Therefore, I will simplify the model by dropping the interaction term

Yij = µ+ αj + πi + ϵij (2)

This interaction-less model is the full model for a design that consists of a single within-
subjects factor and that has only a single measurement per cell. Note that the interaction
effects do not disappear. Instead, they are incorporated into the error term (i.e., the
residuals). By doing this, we are in some sense equating the treatment×subjects interaction
and error. I will return to this point below.

The null hypothesis being tested is

H0 : α1 = α2 = · · · = αj = 0 (3)
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so a restricted model is
Yij = µ+ πi + ϵij (4)

The F test is computed the usual way

F =
(ER − EF )/(df R − df F )

EF /df F
(5)

where EF and ER are SSresiduals from the full and reduced models, respectively. The
degrees of freedom for the residuals in the full model are worth examining. The degrees of
freedom equal the number of observations minus the number of parameters in the model.
You can verify that df F = (n − 1)(a − 1). Thus, df residuals for the model in Equation 2
equals the degrees of freedom for the (deleted) treatment× subjects interaction term. Once
again, we see that there is a connection between the treatment × subjects interaction and
error. The degrees of freedom for the reduced model is n(a− 1), so df R − df F = a− 1.

11.2 model coefficients
When the model in Equation 2 is fit to data, the best-fitting (least-squares) coefficients
are:

µ̂ = Ȳ..

α̂j = Ȳ.j − Ȳ..

π̂i = Ȳi. − Ȳ..

The intercept, µ, is the mean of all scores. The effect of treatment j (αj) is the mean of the
scores in treatment j, averaged across all subjects, minus the grand mean. The effect of
subject i (πi) is the mean score of subject i, averaged across treatments, minus the grand
mean.

11.3 expected mean squares
Consider, again, Equation 2. Let’s imagine that we fit this model to many sets of data and
calculated the average parameter values. It can be shown1 that the average, or expected,
values of the parameters are the ones listed in Table 1. Notice that the expected value
of MSresiduals is the ths sum of the population error variance plus a term related to the
treatment × subjects interaction. This result should not be surprising, because Equation
2 was created essentially by folding the interaction term into error. It is important for
you to realize that the residuals and the interaction term are perfectly confounded in this
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Table 1: Expected Mean Squares for a design that has one, fixed within-subjects factor
(treatment).

Effect Type E(Mean Square)

treatment fixed σ2e + n
∑a

j=1 α
2
j/(a− 1)

subjects random σ2e + aσ2π
residuals σ2e + σ2πα

design: The residual term is the interaction and vice versa. For this reason, some statistics
packages label the residual term as Treatment × Subjects .

Table 1 shows that MStreatment also is influenced by the interaction term. Because the
interaction contributes equally to MStreatment and MSresiduals, it is reasonable to conclude
that σ2α > 0 when MStreatment > MSresiduals. In other words, a comparison of the models
shown in Equations 2 and 4 provides a reasonable test of the null hypothesis. Notice,
however, it is not reasonable to evaluate the effect of subject by dividing MSsubjects by
MSresiduals. In fact, there is no unambiguous F test for the effect of subjects. This lack
of a test is not really a problem, however, because rarely are we interested in showing that
subjects differ beyond what is expected by chance.

11.4 sphericity
A one-way, between-subjects ANOVA assumes that error variance is constant across condi-
tions. A similar assumption is made in the one-way within-subjects ANOVA: Specifically,
the assumption is that the error variances for all of the dependent variables are equal.
Another fundamental assumption in the between-subjects ANOVA is that the errors – i.e.,
the ϵijk’s – are independent. This assumption is reasonable in between-subjects designs
that randomly assign subjects to conditions, but it is less reasonable in within-subjects
studies. Indeed, it is reasonable to expect that errors for a given subject will be correlated,
to some degree, across conditions. Therefore, the independent-errors assumption needs to
be relaxed if we are to conduct a reasonable analysis of data collected in within-subjects
experiments. Instead of assuming independence, we will assume that the errors exhibit a
specific form of dependency, or correlation. In particular, the assumption is that all of
the covariances2 between dependent variables are equal. This combination of assumptions
– equal variances for all dependent variables, and equal covariances between each pair of
dependent variables – is known as the assumption of compound symmetry. The F
calculated in Equation 5 is distributed as an F statistic with df = [(a− 1), (n− 1)(a− 1)]

1See Kirk (1995) for a derivation of the expected mean squares.
2Given random variables X and Y with expected values E(X) and E(Y ), the covariance of X and Y is

E(XY )− E(X)E(Y ).
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if the dependent variables exhibit compound symmetry3.
Although compound symmetry is sufficent for the F to be distributed correctly, it is

not a necessary condition. Huynh and Feldt (1970) and Rouanet and Lépine (1970) showed
that the F value is distributed as an F statistic if the variances of all differences among
the dependent variables have the same variance:

σ2Yj−Yk
= σ2j + σ2k − 2σjk (j ̸= k) (6)

where σjk is the covariance between dependent measures j and k. When this condition is
met, the variance-covariance matrix of the dependent variables is said to be spherical, so
this assumption is known as the sphericity assumption. It is important to remember
that the sphericity assumption applies to all tests of a within-subject factor. Also, the
sphericity assumption is necessarily true whenever the F test for the within-
subject factor has one degree of freedom in the numerator.

Unfortunately, the sphericity assumption often is not valid. In such cases, the F value
calculated in Equation 5 will not be distributed as F with the expected degrees of freedom.
However, it will be distributed approximately as an F statistic with lower degrees of freedom
(Box, 1954). Therefore, one strategy for dealing with violations of the sphericity assumption
is to adjust our degrees of freedom before evaluating F . The modified degrees of freedom
are ϵ(a − 1) and ϵ(n − 1)(a − 1), where ϵ is a number indicating the degree to which the
sphericity assumption is violated. When sphericity exists, ϵ = 1; otherwise, ϵ is less than
one with a minimum value of 1/(a− 1).

In practice, of course, ϵ is not known and so must be estimated from the data. One
strategy is to simply assume that ϵ is at its minimum value. When ϵ = 1/(a−1), df 1 = 1 and
df 2 = (n− 1), and a within-subjects F test using these degrees of freedom is referred to as
the Geisser-Greenhouse conservative F test, or as using the lower-bound adjustment
of the degrees of freedom (Geisser and Greenhouse, 1958) . Alternatively, we can derive
numerical estimates of ϵ from the variance-covariance matrix of our dependent measures.
Geisser and Greenhouse proposed one such estimate, ϵ̂. The degrees of freedom for the
adjusted F test are df 1 = ϵ̂(a − 1) and df 2 = ϵ̂(n − 1)(a − 1). The Geisser-Greenhouse
adjustment controls Type I error but is more powerful than the lower-bound adjustment.
It is, however, slightly conservative as the true population ϵ approaches one, and therefore
Huynh and Feldt (1976) proposed a different adjustment based on their estimate of epsilon
denoted as ϵ̃. The Huynh-Feldt procedure yields adjusted degrees of freedom df 1 = ϵ̃(a−1)
and df 2 = ϵ̃(n− 1)(a− 1). It, too, is more powerful than the lower-bound adjustment, and
it is slightly less conservative than the Geisser-Greenhouse adjustment. Both the Geisser-
Greenhouse and Huynh-Feldt adjustments are acceptable procedures, although the former
probably does a slightly better job at controlling Type I error rates. The conservative F
test, as its name implies, is the most conservative test available: if the conservative F test
is significant, than tests based on ϵ̂ and ϵ̃ will be significant, too.

3Note that the same assumption is made for data collected in between-subjects designs, except that the
standard assumption is that the covariances are all zero.
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11.5 R example
In this section I will analyze the data presented in Table 11.5 in Maxwell and Delaney
(2004). The data are from a fictitious experiment that measured cognitive ability in 12
children at 30, 36, 42, and 48 months of age. First, I read the data file, which contains the
data frames mw115 and mw115L.

load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/mw11_5.rda") )
summary(mw115)

## age.30 age.36 age.42 age.48 subj
## Min. : 84.0 Min. : 84 Min. : 92 Min. : 88 s1 :1
## 1st Qu.: 94.5 1st Qu.: 99 1st Qu.:101 1st Qu.:104 s2 :1
## Median :104.0 Median :107 Median :106 Median :112 s3 :1
## Mean :103.0 Mean :107 Mean :110 Mean :112 s4 :1
## 3rd Qu.:110.8 3rd Qu.:117 3rd Qu.:124 3rd Qu.:124 s5 :1
## Max. :129.0 Max. :128 Max. :132 Max. :133 s6 :1
## (Other):6

summary(mw115L)

## subj age score
## s1 : 4 a30:12 Min. : 84.0
## s2 : 4 a36:12 1st Qu.: 98.2
## s3 : 4 a42:12 Median :107.0
## s4 : 4 a48:12 Mean :108.0
## s5 : 4 3rd Qu.:117.2
## s6 : 4 Max. :133.0
## (Other):24

Each data frame contains four measures taken on each of 12 subjects: mw11 is in the so-
called wide format, and mw11L is in the so-called long format. Each format is useful in
different contexts.

11.5.1 Anova (car package)

To analyze these data, we first use lm() to create a multivariate model of the between-
subjects effects. The four dependent variables – age.30, age.36, age.42 and age.48 –
are combined into a single matrix using the cbind() command. There is no between-
subjects variable in this experiment, so the model contains only an intercept, which in R
is represented as 1:

6



Bennett, PJ PSYCH 710 Chapter 11

options(contrasts=c("contr.sum","contr.poly"))
# multivariate linear model:
# include only intercept in this case:
mw115.mlm <- lm(cbind(age.30,age.36,age.42,age.48) ~ 1, data=mw115)

Now I have to inform R about the nature of the within-subjects design. First, I create a
factor that contains the levels within-subjects variable:

(age<-factor(x= c("a30","a36","a42","a48"),ordered=FALSE) )

## [1] a30 a36 a42 a48
## Levels: a30 a36 a42 a48

Note that the order of the levels is the same as the order of my model’s multivariate
dependent variable. Next, I have to specify the within-subjects design with a formula of
the form Y ∼ myFactor, or Y ∼ A+B+A : B. There is only one within-subjects variable,
age, so the appropriate formula for the current experiment is Y ∼ age. Finally, I use the
Anova command in the car package to convert our multivariate R object, mw115.mlm, into
an anova object. In the next command, note how I pass information about the within-
subjects factor in the idata parameter, and the within-subjects design in the idesign
parameter:

#install.packages("car")
library(car)
mw115.aov <- Anova(mw115.mlm,idata=data.frame(age),idesign=~age,type="III")

Information about the within-subjects design was specified by a one-sided model formula,
∼ age. The type parameter is used to tell Anova to calculate Type III sums of squares.
The fact that our data are balanced (and that we do not have a between-subjects factor)
means that Type II and III sums of squares will be equivalent, and therefore the type
parameter is superfluous in this case. Finally, we can construct an anova table with the
summary command. Setting multivariate to false suppresses the print out of multivariate
tests:

summary(mw115.aov,multivariate=FALSE)

##
## Univariate Type III Repeated -Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 559872 1 6624 11 929.74 5.6e-12 ∗∗∗
## age 552 3 2006 33 3.03 0.043 ∗
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## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
##
##
## Mauchly Tests for Sphericity
##
## Test statistic p-value
## age 0.243 0.0177
##
##
## Greenhouse -Geisser and Huynh -Feldt Corrections
## for Departure from Sphericity
##
## GG eps Pr(>F[GG])
## age 0.61 0.075 .
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
##
## HF eps Pr(>F[HF])
## age 0.7249 0.06354

Several pieces of information are printed in the summary. The first part shows the
standard ANOVA table: the p value for age is the one calculated if we assume that the
sphericity assumption is valid. The second part shows the results of the Mauchly test for
sphericity: the significant p value indicates that the deviation from sphericity is significant.
The Mauchly test has been criticized for having low power, and therefore you might want
to use a liberal Type I error rate (e.g., α = 0.1) when using it to evaluate sphericity. The
final part of the output show ϵ̂ and ϵ̃, as well as the corrected p values for the test of a
main effect of age. Note that neither p value is significant. In a paper, you could report
this result as follows:

[At the beginning of your Results section…] Statistical analyses were done with
R (R Development Core Team, 2008). For within-subject tests of more than
1 degree-of-freedom, the Huynh-Feldt estimate of sphericity (ϵ̃) was used to
adjust p values of F tests conducted on within-subject variables (Maxwell and
Delaney, 2004). [And later, when reporting the result of this analysis…] The
effect of Age was not significant, F (3, 33) = 3.027, ϵ̃ = 0.72, p = 0.063.

11.5.2 aov, aov_car, & Error

The ANOVA table produced by Anova does not include information about subjects. Nor-
mally this is not a problem because there is no F test that can be done to evaluate the
effect of subject. However, the complete table is useful on those occasions when we want
to compute the variance component for subjects. The following code shows how to pro-
duce such a table using the long-format data frame and the aov command. Note how we
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designate subj as a random factor and age as a within-subject factor with the Error term
in our formula.

options(contrasts=c("contr.sum","contr.poly"))
mw115L.aov.01 <- aov(score~1+age+Error(subj/age),data=mw115L)
summary(mw115L.aov.01) # p values assume sphericity

##
## Error: subj
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 11 6624 602
##
## Error: subj:age
## Df Sum Sq Mean Sq F value Pr(>F)
## age 3 552 184.0 3.03 0.043 ∗
## Residuals 33 2006 60.8
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The resulting p value for age assumes sphericity. Note that no F test is performed on subj.
Next, we use aov_car in the afex package. The model specification is the same as in

aov; however, the summary table includes the Mauchly test and adjusted p values.

library(afex)
options("contrasts")

## $contrasts
## [1] "contr.sum" "contr.poly"

mw115L.aov.car.01 <- aov_car(score~1+age+Error(subj/age),data=mw115L)
summary(mw115L.aov.car.01)

##
## Univariate Type III Repeated -Measures ANOVA Assuming Sphericity
##
## Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 559872 1 6624 11 929.74 5.6e-12 ∗∗∗
## age 552 3 2006 33 3.03 0.043 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
##
##
## Mauchly Tests for Sphericity
##
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## Test statistic p-value
## age 0.243 0.0177
##
##
## Greenhouse -Geisser and Huynh -Feldt Corrections
## for Departure from Sphericity
##
## GG eps Pr(>F[GG])
## age 0.61 0.075 .
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
##
## HF eps Pr(>F[HF])
## age 0.7249 0.06354

11.5.3 lmer & lme

Finally, we can analyze the data using lmer and lme in the lme4 and nlme4 packages.
These procedures compute best-fitting coefficients using maximum likelihood or restricted
(or residual) maximum likelihood (REML), and differ in several fundamental ways from
the ANOVA models described previously. As we will see, it is possible to construct mixed
models that allow for by-subject adjustment of the intercept and fixed effect, and that
include allow for general forms of the residual variance-covariance matrix. However, the
mixed-effects model shown below includes a random effect that (like the ANOVA models)
only allows for a by-subject adjustment of the intercept. This is the simplest mixed model
for these data, and it assumes that the residuals on the various levels of the within-subjects
factor are independent and distributed normally with a constant variance. Hence, the
ANOVA table includes a p value for the effect of age that assumes sphericity. The random
effect subj is evaluated with ranova.

library(lmerTest)
mw115L.lmer.01 <- lmer(score~age+(1|subj),data=mw115L)
anova(mw115L.lmer.01) # fixed effects

## Type III Analysis of Variance Table with Satterthwaite 's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## age 552 184 3 33 3.03 0.043 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

ranova(mw115L.lmer.01) # random effects

10



Bennett, PJ PSYCH 710 Chapter 11

## ANOVA -like table for random -effects: Single term deletions
##
## Model:
## score ~ age + (1 | subj)
## npar logLik AIC LRT Df Pr(>Chisq)
## <none> 6 -172 356
## (1 | subj) 5 -185 380 26.3 1 2.9e-07 ∗∗∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

To evaluate the fixed effect without assuming sphericity or adjusting p values, we can
compare our model to one that does not include age. The significant chi-square test
suggests that age accounts for a significant portion of the variance and therefore we should
not remove it from the model.

mw115L.lmer.00 <- lmer(score~1+(1|subj),data=mw115L) # intercept only
anova(mw115L.lmer.00,mw115L.lmer.01) # compare models

## Data: mw115L
## Models:
## mw115L.lmer.00: score ~ 1 + (1 | subj)
## mw115L.lmer.01: score ~ age + (1 | subj)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## mw115L.lmer.00 3 371 377 -183 365
## mw115L.lmer.01 6 369 380 -178 357 8.75 3 0.033 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The mixed model also can be fit to the data using lme in the nlme package. One
advantage of using lme is that it allows you to define the structure of the within-subject
residuals. The following code constructs three models that differ in terms of that struc-
ture. The first treats the residuals of the various levels of age as indendendent (i.e., the
correlation between levels is zero). The second model allows the levels to be correlated,
but the correlation is constant. The third model puts no constraints on the correlations
between levels. All of the models assume that the residuals in each level are distributed
normally with a constant variance. Note that the value of 0.5 in the following code is used
to initialize the parameters and that other values yield the same results.

library(nlme)
# assume independence:
cog.nlme.00 <- lme(score~age,data=mw115L,

random=~1|subj,
correlation=NULL)
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# assume compound symmetry:
cog.nlme.01 <- lme(score~age,data=mw115L,

random=~1|subj,
correlation=corCompSymm(value=0.5,form=~1|subj))

# no constraints on between-level correlations:
cog.nlme.02 <- lme(score~age,data=mw115L,

random=~1|subj,
correlation=corSymm(value=c(.5,.5,.5,.5,.5,.5),form=~1|subj))

The model’s correlation structure is listed by the summary command, which is shown below
only for the third model. You can see that the correlation is greatest between similar ages
(e.g., 30 and 36 months) and declines as the ages become separated in time.

summary(cog.nlme.02) # no constraints

## Linear mixed -effects model fit by REML
## Data: mw115L
## AIC BIC logLik
## 352.6 374 -164.3
##
## Random effects:
## Formula: ~1 | subj
## (Intercept) Residual
## StdDev: 10.53 9.957
##
## Correlation Structure: General
## Formula: ~1 | subj
## Parameter estimate(s):
## Correlation:
## 1 2 3
## 2 0.601
## 3 0.391 0.579
## 4 0.226 0.050 0.718
## Fixed effects: score ~ age
## Value Std.Error DF t-value p-value
## (Intercept) 108 3.736 33 28.910 0.0000
## age1 -5 1.953 33 -2.561 0.0152
## age2 -1 1.940 33 -0.515 0.6097
## age3 2 1.368 33 1.462 0.1531
## Correlation:
## (Intr) age1 age2
## age1 -0.018
## age2 -0.015 0.131
## age3 0.164 -0.820 -0.248
##
## Standardized Within -Group Residuals:
## Min Q1 Med Q3 Max
## -1.5286 -0.5366 -0.1105 0.6271 1.5012
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##
## Number of Observations: 48
## Number of Groups: 12

The next block of code uses ANOVA to evaluate the fixed effect. The p values for
the age F test in the first two models are identical. This result makes sense because the
assumption of independent within-subject errors made in the first model is, as far as the F
test concerned, equivalent to the assumption of compound symmetry in the second model.
In other words, forcing the correlation between levels to be zero is a particular instance of
compound symmetry, whereas the second model allows the variance-covariance matrix to
be possess any type of compound symmetry. The results of the F test on the fixed factor,
age, differ slightly in the third model, which used a more complex variance-covariance
matrix.

anova(cog.nlme.00) # independent

## numDF denDF F-value p-value
## (Intercept) 1 33 929.7 <.0001
## age 3 33 3.0 0.0432

anova(cog.nlme.01) # compound symmetry

## numDF denDF F-value p-value
## (Intercept) 1 33 929.7 <.0001
## age 3 33 3.0 0.0432

anova(cog.nlme.02) # no constraints

## numDF denDF F-value p-value
## (Intercept) 1 33 916.4 <.0001
## age 3 33 2.7 0.0633

Finally, we can compare the overall fit of the three models with the anova command,
which confusingly evaluates the goodness-of-fit with chi-square tests. Note that the first two
models provide the same fit, although the second model uses one more degree of freedom
(to estimate the correlation between the residuals). The third model uses six more degrees
of freedom than the first model to estimate the six correlations between residuals on the
four levels of age. The third model provides a significantly better fit than the other two.
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anova(cog.nlme.00,cog.nlme.01,cog.nlme.02) # 3rd model fits better

## Model df AIC BIC logLik Test L.Ratio p-value
## cog.nlme.00 1 6 355.5 366.2 -171.8
## cog.nlme.01 2 7 357.5 370.0 -171.8 1 vs 2 0.00 1.0000
## cog.nlme.02 3 12 352.6 374.0 -164.3 2 vs 3 14.91 0.0108

11.6 variance components & intra-class correlation
The estimated values of the mean squares for our design are shown in Table 1. If we assume
that the subject × treatment interaction is zero, then the expected values for subject and
the error differ only by aσ2π, and therefore the variance component for subject could be
estimated with the formula

σ̂2π =
MSsubjects −MSerror

a

which for our data yields σ̂2π = 135.4. Association strength for the random factor, as
indexed by the intra-class correlation is

ρ̂π =
σ̂2π

σ̂2π + σ̂2e

or ρ̂π = 135.4/(135.4+60.79) = 0.69. Of course these estimates depend on the assumption
that σ2πα = 0, which may not be reasonable.

ANOVA estimates of the variance components also can be calculated using anovaMM in
the VCA package. Random effects are specified in the model formula by enclosing the terms
in parentheses. The values of the variance components are the same as those calcuated
from the mean squares with the assumption that σ2πα = 0. In addition, the table lists the
intra-class correlations in the %Total column.

library(VCA)
aov.vca <- anovaMM(score~age+(subj),Data=mw115L) # note capital D in Data
print(aov.vca,digits=3)

##
##
## ANOVA -Type Estimation of Mixed Model:
## --------------------------------------
##
## [Fixed Effects]
##
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## int agea30 agea36 agea42 agea48
## 112 -9 -5 -2 0
##
##
## [Variance Components]
##
## Name DF SS MS VC %Total SD CV[%]
## 1 total 18.117 196.136 100 14.005 12.967
## 2 subj 11 6624 602.182 135.348 69.007 11.634 10.772
## 3 error 33 2006 60.788 60.788 30.993 7.797 7.219
##
## Mean: 108 (N = 48)
##
## Experimental Design: balanced | Method: ANOVA

Finally, we can extract variance components from lmer and lme objects using the
VarCorr command. For this simple, balanced design, the variance components and intra-
class correlations from the lmer object are equal to the ANOVA estimates

# lmer
lmer.vca <- VarCorr(mw115L.lmer.01) # independence
print(lmer.vca,comp=c("Variance","Std.Dev."))

## Groups Name Variance Std.Dev.
## subj (Intercept) 135.3 11.6
## Residual 60.8 7.8

library(performance)
icc(mw115L.lmer.01,by_group=T)

## # ICC by Group
##
## Group | ICC
## -------------
## subj | 0.690

The variance components differ across the models fit with lme. The variance compo-
nents from the first model, which assumed that the residuals were independent across levels
of age, are the same as the anova estimates. The variance component for subj is slightly
smaller in the other two models. Using the third model, our estimate of the intra-class
correlation for subject is 0.62.
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# lme
VarCorr(cog.nlme.00) # independence

## subj = pdLogChol(1)
## Variance StdDev
## (Intercept) 135.35 11.634
## Residual 60.79 7.797

VarCorr(cog.nlme.01) # compound symmetry

## subj = pdLogChol(1)
## Variance StdDev
## (Intercept) 52.1 7.218
## Residual 144.0 12.002

VarCorr(cog.nlme.02) # no constraints

## subj = pdLogChol(1)
## Variance StdDev
## (Intercept) 110.89 10.530
## Residual 99.14 9.957

( icc.subj <- 131.54 / (131.54 + 78.49) )

## [1] 0.6263

11.7 association strength & effect size for the fixed effect
Maxwell and Delaney (2004) present an equation for ω2, which represents the proportion
of the variance of the treatment effects relative to the sum of all of the effects in the model:

ω2
A =

σ2α
σ2e + σ2π + σ2α

It can be estimated from the anova table with the formula:

ω̂2
A =

(a− 1)(MSA −MSAxS )

SSTotal +MSS
(7)

a is the number of levels on the fixed factor, A. For the data analyzed in the previous
section, omega squared for age is
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3(184− 60.8)

6624 + 552 + 2006 + 602
= 0.04

Note that omega-squared is less than zero when FA < 1. In such cases it is standard
practice to set omega-squared to zero (Kirk, 1995). Omega squared can be used to derive
an estimate of effect size, Cohen’s f (Kirk, 1995):

f̂A =

√
ω̂2
A

1− ω̂2
A

(8)

For our example, f̂ = 0.204.
Measures of effect size and association strength for the fixed factor also can be calculated

using commands in the effectsize package. Note that the value returned by cohens_f
is calculated by substituting η2 for ω2 in Eq. 8.

library(effectsize)
omega_squared(mw115L.aov.car.01)

## # Effect Size for ANOVA (Type III)
##
## Parameter | Omega2 (partial) | 95% CI
## -------------------------------------------
## age | 0.04 | [0.00, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

cohens_f(mw115L.aov.car.01) # # uses eta-squared = 0.22 in Eq 8

## # Effect Size for ANOVA (Type III)
##
## Parameter | Cohen 's f (partial) | 95% CI
## ---------------------------------------------
## age | 0.52 | [0.07, Inf]
##
## - One-sided CIs: upper bound fixed at [Inf].

Finally, we calculate association strength and effect size using an lmer object.

omega_squared(mw115L.lmer.01) # estimated from F value of 3.03
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## # Effect Size for ANOVA (Type III)
##
## Parameter | Omega2 (partial) | 95% CI
## -------------------------------------------
## age | 0.14 | [0.00, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

cohens_f(mw115L.lmer.01) # uses eta-squared = 0.22 in Eq 8

## # Effect Size for ANOVA (Type III)
##
## Parameter | Cohen 's f (partial) | 95% CI
## ---------------------------------------------
## age | 0.52 | [0.07, Inf]
##
## - One-sided CIs: upper bound fixed at [Inf].

These values differ from previous ones because effectsize estimates them from the F
statistic rather than the SS and MS values in the ANOVA table:. See the vignette, Effect
Size from Test Statistics in the effectsize package, for more details.

anova(mw115L.lmer.01)

## Type III Analysis of Variance Table with Satterthwaite 's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## age 552 184 3 33 3.03 0.043 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

F_to_eta2(3.03,3,33)

## Eta2 (partial) | 95% CI
## -----------------------------
## 0.22 | [0.00, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

F_to_omega2(3.03,3,33)

## Omega2 (partial) | 95% CI
## -------------------------------
## 0.14 | [0.00, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].
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F_to_f(3.03,3,33)

## Cohen 's f (partial) | 95% CI
## ---------------------------------
## 0.52 | [0.07, Inf]
##
## - One-sided CIs: upper bound fixed at [Inf].

11.8 linear comparisons among treatments
The strategy for conducting comparisons among treatments is similar to the one used
previously for between-subjects designs. We start by creating a set of contrast weights
that represent the comparison of interest: there should be one weight for each dependent
measure, and all of the weights must sum to zero. Next, we create a composite score, ψi,
for each subject that is simply the sum weighted dependent variables:

ψi =

a∑
j=1

cjYij

Finally, the values of the composite scores are evaluated using a t.test. If the null
hypothesis being evaluated by our comparison is non-directional, then we use t.test to
test the null hypothesis that the composite scores were drawn from a zero-mean population.
Consider, again, the data analyzed in section 11.5. Let us use a linear trend analysis to
evaluate the hypothesis that scores followed a linear trend across age. The first step is
to transform our data frame into a matrix of numbers:

dat.mat <- with(mw115,cbind(age.30,age.36,age.42,age.48) )
dat.mat

## age.30 age.36 age.42 age.48
## [1,] 108 96 110 122
## [2,] 103 117 127 133
## [3,] 96 107 106 107
## [4,] 84 85 92 99
## [5,] 118 125 125 116
## [6,] 110 107 96 91
## [7,] 129 128 123 128
## [8,] 90 84 101 113
## [9,] 84 104 100 88
## [10,] 96 100 103 105
## [11,] 105 114 105 112
## [12,] 113 117 132 130
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The variable dat.mat represents the data as a four-column matrix: each row contains the
data from one subject, and each column contains the data from a single age. Next, we
create the contrast weights and then the composite scores using the matrix multiplication
operator %*%. Note that the order of the terms is important here, so pay attention!

lin.trend<-c(-1.5,-0.5,0.5,1.5);
lin.scores<-dat.mat %*% lin.trend;
lin.scores

## [,1]
## [1,] 28
## [2,] 50
## [3,] 16
## [4,] 26
## [5,] -3
## [6,] -34
## [7,] -4
## [8,] 43
## [9,] 4
## [10,] 15
## [11,] 6
## [12,] 33

Finally, we use t.test to evaluate the null hypothesis that the linear trend scores are
drawn from a distribution with a mean of zero.

t.test(lin.scores)

##
## One Sample t-test
##
## data: lin.scores
## t = 2.2, df = 11, p-value = 0.05
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 0.2702 29.7298
## sample estimates:
## mean of x
## 15

The t test is significant (t = 2.24, df = 11, p = 0.046) so we reject the null hypothesis that
our composite scores, which represent the linear trend across age, are zero. Note that in
this case the sphericity assumption must be valid because our comparison is a single degree
of freedom test. Hence, there is a significant linear association between score and age.

20



Bennett, PJ PSYCH 710 Chapter 11

It is also possible to do directional tests of our hypothesis. For example, here is how
we could test the hypothesis that there is an increasing linear trend with age.

t.test(lin.scores,alternative="greater")

##
## One Sample t-test
##
## data: lin.scores
## t = 2.2, df = 11, p-value = 0.02
## alternative hypothesis: true mean is greater than 0
## 95 percent confidence interval:
## 2.981 Inf
## sample estimates:
## mean of x
## 15

The null hypothesis is that the composite scores are drawn from a population with a mean
µcomposite ≤ 0 ; the alternative hypothesis is µcomposite > 0. The test is significant, so we
reject the null hypothesis in favor of the alternative. Note that the results of our directional
test depends critically on the sign of the contrast scores:

lin.trend<-c(1.5,0.5,-0.5,-1.5);
lin.scores<-dat.mat%*%lin.trend;
lin.scores

## [,1]
## [1,] -28
## [2,] -50
## [3,] -16
## [4,] -26
## [5,] 3
## [6,] 34
## [7,] 4
## [8,] -43
## [9,] -4
## [10,] -15
## [11,] -6
## [12,] -33

t.test(lin.scores,alternative="greater")

##
## One Sample t-test
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##
## data: lin.scores
## t = -2.2, df = 11, p-value = 1
## alternative hypothesis: true mean is greater than 0
## 95 percent confidence interval:
## -27.02 Inf
## sample estimates:
## mean of x
## -15

The bottom line is that you have to have a very clear understanding of how your contrast
weights are related to your t.test.

11.8.1 comparisions using emmeans

In the previous section, the t test that evaluated the linear trend used a so-called local
error term that was calculated using the linear trend scores and had 11 degrees of freedom.
Alternatively, we could have used the so-called global error term from the original ANOVA,
which was based on all of the mean square residuals (within-subjects) and had 33 degrees
of freedom. To highlight the difference between the two error terms, the t test for linear
trend is recast here as an ANOVA that evaluates the null hypothesis that the grand mean
(i.e., the intercept) is zero. To do this correctly, it is important to use the same weights
for the linear trend that we used for the t test.

wLinear <- c(-1.5,-0.5,0.5,1.5);
lin.scores<-dat.mat %*% wLinear;
summary(aov(lin.scores~1),intercept=T) # using local error term

## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 2700 2700 5.02 0.047 ∗
## Residuals 11 5912 537
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

Next, we use the error term from the original ANOVA to recalculate the F and p values.
However, before recalculating the F , we normalize the mean square by the sum of the
squared contrasts weights.

w2 <- sum(wLinear^2) # sum of squared contrast weights
MS.lin.trend <- 2700/w2 # normalized mean square
summary(mw115L.aov.01)[[2]]
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## Df Sum Sq Mean Sq F value Pr(>F)
## age 3 552 184.0 3.03 0.043 ∗
## Residuals 33 2006 60.8
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

MS.err <- 60.8
df.err <- 33
F.lin.trend.global <- MS.lin.trend /MS.err
p.new <- 1-pf(F.lin.trend.global,1,df.err)
c(F.lin.trend.global,p.new) # list F and p values

## [1] 8.881579 0.005373

The emmeans package can perform contrasts on within-subjects factors. Interestingly,
it sometimes sometimes uses the local estimate error and other times uses the global error.
For example, it uses the local estimate of error (df=11) when the input is an aov_car
object:

library(emmeans)
# aov_car object:
# mw115L.aov.car.01 <- aov_car(score~1+age+Error(subj/age),data=mw115L)
mw115L.aov.car.emm <- emmeans(mw115L.aov.car.01,specs="age")
# uses local estimate of error:
contrast(mw115L.aov.car.emm,method=list(linear=wLinear))

## contrast estimate SE df t.ratio p.value
## linear 15 6.69 11 2.241 0.0466

However, the global error estimate (df=33) is used when the input is an aov or lmer object

# aov object:
# mw115L.aov.01 <- aov(score~1+age+Error(subj/age),data=mw115L)
mw115L.aov.emm <- emmeans(mw115L.aov.01,specs="age")
# lmer object:
# mw115L.lmer.01 <- lmer(score~age+(1|subj),data=mw115L)
mw115L.lmer.emm <- emmeans(mw115L.lmer.01,specs="age")
# contrast uses the uses global estimate of error:
contrast(mw115L.aov.emm,method=list(linear=wLinear))
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## contrast estimate SE df t.ratio p.value
## linear 15 5.03 33 2.981 0.0054

contrast(mw115L.lmer.emm,method=list(linear=wLinear))

## contrast estimate SE df t.ratio p.value
## linear 15 5.03 33 2.981 0.0054
##
## Degrees -of-freedom method: kenward -roger

2.981^2 # square t to get value of F statistic

## [1] 8.886
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