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10 Random or Nested Factors
10.1 Random Effects
So far in this course we have been using statistical methods that are appropriate for cases in which the ex-
perimenter is interested in knowing the effects of the particular levels of the independent variables included
in the experiment. Such factors are called fixed because the same levels would be used in replications of the
experiment, and the models used to analyzed such data are called fixed-effects models. However, in other exper-
imental situations it may not be possible or appropriate to include all levels of a variable in a single experiment,
and therefore we may be forced to select a subset, or sample, of the population of levels for inclusion in our
experiment. The particular levels of the factor therefore are likely to vary across replications of the experiment.
Factors in which levels have been selected randomly are called random factors, and the statistical models used
to analyze experiments that use such factors are called random-effects models. If an experiment contains both
fixed and random factors, then the data are analyzed with a so-called mixed model.

Why do we need a different kind of model to analyze experiments that include random factors? In fixed-
effects models, the only source of random variation among scores is error variance. However, experiments
that include random factors have multiple sources of variability, or variance components: in addition to error
variance, the effects associated with random factors are conceptualized as random variables drawn from a
population of effects. As we shall see, these extra sources of variation alter the way we evaluate main effects
and interactions. Furthermore, the goal of evaluating random effects differs slightly from the goal of analyzing
fixed effects. In the case of fixed-effects models, conclusions reached about significance (or lack thereof) of main
effects and interactions are restricted to the particular levels of the factors that were included in the experiment.
Random-effects models, on the other hand, enable us to generalize our conclusions to the entire population of
levels of the random factor, even ones not included in our experiment.

10.2 one-factor case
Data from an experiment that uses a single random factor are analyzed by comparing the following two nested
models:

Yij = µ+ αj + ϵij (1)
Yij = µ+ ϵij (2)

As before, the errors are assumed to be independent and normally distributed with a zero mean and a variance
of σ2

ϵ . Note that these models look identical to the ones used to evaluate one-factor, fixed effects experiments.
However, in a random effects model the α’s are assumed to be random variables selected from a normal dis-
tribution with a mean of zero and a variance of σ2

α. Furthermore, αj and ϵij are assumed to be independent.
With these assumptions, the expected value of the scores is µ, and the variance of the Yij ’s is the sum of two
variance components:

Var(Yij) = σ2
α + σ2

ϵ (3)
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The random effects models in Equations 1 and 2 can be used to evaluate the following null and alternative
hypotheses:

H0 : σ2
α = 0 (4)

H1 : σ2
α > 0 (5)

Note how these hypotheses differ from those evaluated by fixed-effects models. Also note that the conclusions
drawn from the analysis apply to all possible levels of the random factor, not just the ones used in the current
experiment.

Despite these differences, the actual statistical test of a random effect in a one-factor design is equivalent to
the test used to evaluate a single fixed factor. As for the fixed-effects case, the expected value of the mean-square
residuals, or mean-square within group, for the full model is

ξ

[
EF

df F

]
= ξ [MSWG] = σ2

ϵ , (6)

where EF is the sum of squared residuals from the full model, and df F – the degrees of freedom – equals the
total number of scores minus the number of groups (df = N −a). There are several ways of estimating variance
components, so Equation 6 sometimes is referred to as the ANOVA estimate of the variance component σ2

ϵ .
Equation 6 is true regardless of whether the null hypothesis is true or false, but the between-group variation
does depend on the status of the null hypothesis. When it is true, σ2

α = 0, error variance is the only source
of variation among the scores, and therefore the expected value of the mean-square between groups equals the
expected value of MSWG:

ξ [MSBG] = ξ [MSWG] = σ2
ϵ (7)

When the null hypothesis is false, the variation among scores reflects σ2
α and σ2

ϵ , and the expected value of
MSBG is

ξ [MSBG] = ξ

[
ER − EF

df R − df F

]
= σ2

ϵ + n′σ2
α (8)

where ER is the sum of squared residuals from the reduced model, df R equals the total number of scores minus
one (df = N − 1), and

n′ = [1/(a− 1)]
[∑

nj − (
∑

n2
j/

∑
nj)

]
(9)

When there are an equal number of subjects per group, n′ = n. When there are unequal numbers of subjects
per group, 0 < n′ < n̄.

When the null hypothesis is true, σ2
α = 0, MSBG ≈ MSWG, and the expected value of MSBG/MSWG is

one. In this case, the ratio MSBG/MSWG is a random variable that is distributed as F with a − 1 and N − a
degrees of freedom. However, when the null hypothesis is false, σ2

α > 0 and the expected value of MSBG/MSWG

increases. This fact forms the basis of the null hypothesis test: we assume that H0 is true, and therefore that
the ratio of mean-squares is distributed as F with a− 1 and N − a degrees of freedom. If the observed ratio is
unusually large – i.e., if the probability of obtaining an F that is at least as large as the observed value is ≤ .05
or .01 – then we reject the null hypothesis in favor of the alternative.

10.2.1 strength of association & variance components

When dealing with a random factor, the proper measure of association strength is the intraclass correlation,
which is denoted as ρI . The intraclass correlation represents the proportion of population variance accounted
for by a random effect:

ρI =
σ2
α

σ2
α + σ2

ϵ

(10)
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When there are equal n per group, the expected value of MSBG is σ2
ϵ + nσ2

α. Taking advantage of the fact that
ξ(MSWG) = σ2

ϵ , it is possible to show that

σ̂2
α = (1/n)× (MSBG −MSWG) (11)

Equation 11 sometimes is referred to as the ANOVA estimate of the variance component σ2
α. Using this last

equation, we can show that an unbiased estimate of the intraclass correlation is given by Equation 12 or 13.
Notice that ρ̂I < 0 when FBG < 1. On such occasions, it is standard practice to set ρ̂I to zero1.

ρ̂I =
MSBG −MSWG

MSBG + (n− 1)MSWG
(12)

ρ̂I =
FBG − 1

(n− 1) + FBG
(13)

10.2.2 variance ratio σ2
α/σ

2
e

In some fields, there is more interest in estimating the variance ratio θ = σ2
α/σ

2
e than the variance components

themselves. One can use Equation 11 and simply calculate the ratio σ̂2
α/σ̂

2
e , but that is a biased estimate (Sahai

and Ageel, 2000). An unbiased estimate is provided by

θ̂ =
MSBG −mMSWG

mnMSWG
(14)

where

m =
a(n− 1)

a(n− 1)− 2
. (15)

The variance ratio can be used to evaluate hypotheses such as:

H0 :
σ2
α

σ2
e

≤ θ0

H1 :
σ2
α

σ2
e

> θ0

Sahai and Ageel (2000) point out that this null hypothesis can be evaluated with the statistic Fobs = MSBG/MSWG,
and rejecting H0 if

Fobs > (1 + nθ0)Fc (16)

where Fc is the critical value of F when df1 = a− 1, df2 = a(n− 1), and the Type I error rate is α.

10.2.3 power

To estimate power, we start by defining

frand =
σα
σϵ

. (17)

frand is analogous to Cohen’s f , which is a measure of effect size for fixed effects. It is possible to show that
the ratio of the expected values of the between- and within-group means squares is

1In some circumstances it may be better to keep the negative value. For example, if you are averaging values across experiments
then setting negative values to zero would introduce a positive bias and therefore it might be best to include the negative values in
the average.
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ξ(MSBG)

ξ(MSWG)
= (1 + nf2

rand )

where n is the number of subjects per group2. When the null hypothesis is true, the ratio of between- and
within-group mean squares will be distributed as F with a− 1 and a(n− 1) degrees of freedom, where a is the
number of groups. Let us define Fcritical as the value of F that would lead to a rejection of the null hypothesis
for a given level of α. In R, Fcritical can be calculated using the command

F.crit <- qf(1-alpha, df1=a-1, df2=a*(n-1))

Power refers to the probability that the observed value of F , or Fobs , exceeds Fcritical when the null hypothesis
is false. When the null hypothesis is false, Fobs is a random variable that is distributed as a multiple of a regular
F statistic that has a− 1 and a(n− 1) degrees of freedom. Specifically,

P [Fobs ≥ X] = P

[
ξ(MSBG)

ξ(MSWG)
Fa−1, a(n−1) ≥ X

]
= P [(1 + nf2

rand )Fa−1, a(n−1) ≥ X]

If we let X = Fcritical , power can be calculated as

power = P
[
(1 + nf2

rand )Fa−1, a(n−1) ≥ Fcritical

]
and therefore

power = P
[
Fa−1, a(n−1) ≥ Fcritical/(1 + nf2

rand )
]

In R, this probability can be calculated with the pf() command:

k <- ( 1+n*(f.rand^2) )
the.power <- 1-pf(F.crit/k, df1=a-1, df2=a*(n-1))

10.2.4 linear contrasts

Given the fact that levels of a random factor are selected randomly, and given the nature of the null and
alternative hypotheses that are evaluated with a random-effects model, it is not clear if it is meaningful to
compare individual levels of a random factor. Certainly it is hard to imagine a case where planned comparisons
are appropriate: the levels were selected randomly, so why would we plan to do a specific comparison? Also,
post-hoc tests strike me as odd because the statistical tests are being used to evaluate the variance of the
population effects, rather than estimating the α’s for the particular levels of the factor used in the experiment.
Nevertheless, there may be a situation where you feel compelled to do comparisons among the group means. In
that case, the methods are the same as those used to evaluate contrasts of fixed effects.

10.2.5 Dyestuff example

This example uses the Dyestuff data frame, which is part of the lme4 package:

options(contrasts=c("contr.sum","contr.poly"))
# library(lme4) # load lme4 into memory
library(lme4)
data(Dyestuff) # load data frame into memory
head(Dyestuff)

2I will consider only the case where there are equal n per group.
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Table 1: Hypothetical population of A and B scores.

b1 b2 b3 b4 b5 b6 Mean
a1 4 6 3 1 2 2 3
a2 2 0 3 5 4 4 3

mean 3 3 3 3 3 3 3

## Batch Yield
## 1 A 1545
## 2 A 1440
## 3 A 1440
## 4 A 1520
## 5 A 1580
## 6 B 1540

with(Dyestuff,tapply(Yield,Batch,length))

## A B C D E F
## 5 5 5 5 5 5

The data frame contains the yield of dyestuff (Naphthalene Black 12B) from five preparations from each of
six randomly selected batches of an intermediate chemical product (H-acid). We know that the yield varies
across preparation. Presumably, the variation among yields is due to variation among batches as well as
variation among preparations. We will conduct a one-way, random effects ANOVA to estimate the two variance
components:

options(contrasts=c("contr.sum","contr.poly"))
dye.aov <- aov(Yield~Batch,data=Dyestuff)
summary(dye.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## Batch 5 56357 11271 4.6 0.0044 ∗∗
## Residuals 24 58830 2451
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

var.comp.error <- 2451 # variance component preparations (i.e., error)
n <- 5
( var.comp.batch <- (11272-2451) / 5 ) # variance component batch

## [1] 1764

sqrt(c(var.comp.batch,var.comp.error)) # standard deviations

## [1] 42.00 49.51

var.comp.batch / var.comp.error
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## [1] 0.7198

# unbiased estimate variance ratio
m <- 6 * (n-1) / (6 * (n-1) - 2)
(11272 - m*2451) / (m*n*2451) # calculated with Eq 14

## [1] 0.6431

# association strength (intraclass correlation):
var.comp.batch / (var.comp.batch + var.comp.error)

## [1] 0.4185

sqrt(var.comp.batch + var.comp.error) # estimated population stand dev of yield

## [1] 64.92

sd(Dyestuff$Yield) # sample stand dev of yield

## [1] 63.02

The effect of Batch was significant (F (5, 24) = 4.59, p = 0.004), so we reject the null hypothesis that the variance
among batches is zero. Also, the estimated variance component for batch (1764.2) is 72% the size of the variance
among preparations (2451): in other words, variation among batches accounts for ≈ 42% of the total variance
of yields. We note that the estimated standard deviation of yields, σ̂yield = 64.9 =

√
σ̂2
batch + σ̂2

error is similar
to the sample standard deviation (63.02).

Finally, we can use Equation 16 to evaluate the null hypothesis that σ2
α/σ

2
e ≤ 0.5. The observed value of F

was not greater than (1 + nθ0)Fc, and therefore we do not reject the null hypothesis.

F.obs <- 4.6
theta0 <- 0.5
df1 <- 5
df2 <- 24
alpha <- .05
Fc <- qf(1-alpha,df1,df2) # Fc = 2.621
(1+n*theta0)*Fc

## [1] 9.172

(F.obs > (1+n*theta0)*Fc)

## [1] FALSE
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10.2.6 Using lmer

The following code illustrates how to perform the analyses using lmer. The random effect is specified as (1
| Batch). The command ranova evaluates the random effect using chi-square test. Note that the variance
components given by VarCorr are listed as standard deviations, not variances. The final line of the code segment
uses the variance components to calculate association strength (i.e., the intraclass correlation, ρ̂) for Batch.

library(lmerTest)
dye.lme <- lmer(Yield~(1|Batch),data=Dyestuff)
ranova(dye.lme)

## ANOVA -like table for random -effects: Single term deletions
##
## Model:
## Yield ~ (1 | Batch)
## npar logLik AIC LRT Df Pr(>Chisq)
## <none> 3 -160 326
## (1 | Batch) 2 -163 330 6.37 1 0.012 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

VarCorr(dye.lme)

## Groups Name Std.Dev.
## Batch (Intercept) 42.0
## Residual 49.5

( ICC <- 42^2 / (42^2 + 49.5^2) ) # association strength

## [1] 0.4186

Association strength also can be calculated with by the icc command in the performance package. The
adjusted and conditional values take into account all random effects variances, but the conditional ICC also
takes into account variances due to all fixed effects. In this case the model includes only one random factor, so
the adjusted and conditional values are equal.

library(performance)
icc(dye.lme) # association strength

## # Intraclass Correlation Coefficient
##
## Adjusted ICC: 0.418
## Unadjusted ICC: 0.418

10.3 two-way factorial designs
10.3.1 mixed model

In this section we consider the analysis of an experiment that uses two factors that are crossed in a balanced
factorial design. Previously, we have considered the case where both factors are fixed; here we consider the
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case where at least one of the factors is random. The full linear model for analyzing data collected in such
experiments is

Yijk = µ+ αj + βk + (αβ)jk + ϵijk (18)

When one factor (A) is fixed and the other factor (B) is random, Equation 18 represents a mixed model. For the
mixed model (A fixed), the intercept, µ, is estimated by the grand mean of the scores. The effect of treatment
aj (i.e., αj) is defined as in the fixed-effects case and is subject to the constraint that the sum of α’s is zero. The
effect of treatment bk is a random variable that is distributed normally with a mean of zero and a population
variance of σ2

β. The interaction effect, (αβ)jk, is a random variable distributed normally with a mean of zero
and a variance of σ2

(αβ), with the constraint that the sum of interaction effects across the levels of the fixed
factor is zero:

a∑
j=1

(αβ)jk = 0

The random variables βk and (αβ)jk are independent of each other, and also are independent of ϵijk which is
distributed normally with a mean of zero and a variance of σ2

e .
The sum of squares for the main effects and interaction are calculated by comparing the sum of squares

residuals for the full model (Equation 18) with reduced models that have set the α’s, β’s, and (αβ)’s to zero.
For the case where there are equal n per cell

SSA = bn

∑
j α̂

2
j

a− 1
(19)

SSB = an

∑
k β̂

2
j

b− 1
(20)

SSA×B = n

∑
j

∑
k

ˆ(αβ)
2

jk

(a− 1)(b− 1)
(21)

The mean squares are obtained by dividing each SS value with the appropriate degrees of freedom (dfA = a−1;
dfB = b− 1; dfA×B = (a− 1)(b− 1)).

The methods for calculating SS and MS values for mixed models are the same as those used to evaluate
fixed-effects models. However, the expected values of the mean squares, and therefore the method of evaluating
the statistical significance of the effects, differ from the fixed-effects case. To illustrate this difference, consider
the situation in which two factors, A and B, are crossed and there are no main effects: the marginal means
of A and the marginal means of B are equal. Such a situation is illustrated in Table 1. Now consider what
would happen if we randomly sampled two levels of B from the population of six levels, creating a set of four
scores. One example is shown in Table 2. Notice that the marginal means of A are no longer equal. In other
words, sampling the levels of B resulted in an apparent main effect of A. How did this occur? Inspection of
Table 1 indicates that the effect of A depended on the level of B: There was an A × B interaction. These
interaction effects summed to zero across all levels of B, and therefore there was no main effect of A. However,
the interaction effects are not guaranteed to sum to zero across a random subset of the levels of B, and therefore
the A × B interaction can masquerade as a main effect of A. This effect of subsampling the levels of B alters
the expected value of MSA.

The expected values of the mean squares for a design that includes one fixed factor (A) and one random
factor (B) are shown in Table 3. Note that ξ(MSB) and ξ(MSA×B) are as expected: the expected values are
the sum of σ2

e and the variance of the appropriate effect (i.e., σ2
β or σ2

(αβ)). Also note that both B and A× B
are considered random, not fixed, effects. Because these expected mean squares are of the expected form, the
B main effect and the A × B interaction can be evaluated by in the usual way (i.e., estimating F by dividing
MSB and MSA×B by the mean square residual term, or MSR). However, such an F test is not appropriate for
evaluating the effect of A. If σ2

(αβ) > 0, then ξ(MSA) > σ2
e even if all of the fixed effects (i.e., the α′s) are zero.
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Table 2: Scores resulting after sampling levels of factor B.

b1 b2 Mean
a1 4 6 5
a2 2 0 1

mean 3 3 3

In other words, comparing MSA to MSR would produce a biased test of the null hypothesis that αj = 0 for
every group j, and our Type I error would be greater than the nominal value. On the other hand, comparing
MSA to MSA×B would produce an unbiased test of the null hypothesis, because the expected values of MSA
and MSA×B are equal when the null hypothesis of all αj ’s being zero is true. Therefore, when evaluating the
main effect of a fixed factor in a mixed design, the mean square of the fixed factor (MSA) is compared to the
mean square of the interaction (MSA×B), not mean square residuals (MSR).

Table 3: Expected mean squares for mixed and random factorial designs.

Source ξ(MS) A fixed; B random ξ(MS) A & B random
A σ2

e + nσ2
(αβ) + bn

∑a
j=1 α

2
j/(a− 1) σ2

e + nσ2
(αβ) + bnσ2

α

B σ2
e + anσ2

β σ2
e + nσ2

(αβ) + anσ2
β

A×B σ2
e + nσ2

(αβ) σ2
e + nσ2

(αβ)

Residuals σ2
e σ2

e

The null and alternative hypotheses for the main effect of the fixed factor, A, are

H0 : αj = 0 for all levels j

H1 : αj ̸= 0 for at least one level j

The null and alternative hypotheses for the random factor, B, are

H0 : σ2
β = 0

H1 : σ2
β > 0

Finally, the F test for the A×B interaction evaluates the following hypotheses:

H0 : σ2
(αβ) = 0

H1 : σ2
(αβ) > 0

10.3.2 random-effects model

We now consider the situation where the experiment contains two crossed, random factors. The full random-
effects model is Equation 18, the same as the mixed model. However, unlike the mixed model, the effect of αj

is a random variable distributed normally with a zero mean and a variance σ2
α. Table 3 also shows the expected

mean squares for the random-effects model. In this case, both MSA and MSB contain a variance component
related to the A×B interaction (i.e., nσ2

(αβ)), and therefore neither main effect can be evaluated by comparing
the mean square to MSR. Instead, both random main effects must be evaluated by comparing the mean squares
to MSA×B. The interaction term in a two-way, factorial random design can still be evaluated by comparing
MSA×B to MSR. The F test for the main effect of A evaluates the following null and alternative hypotheses:
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H0 : σ2
α = 0

H1 : σ2
α > 0

The F tests for B and A×B evaluate the same null hypotheses that were tested in the mixed model.

10.3.3 strength of association

For two-factor designs, the recommended indices of association strength for fixed and random factors are,
respectively, partial omega-squared and partial intraclass correlation. If A is fixed and B is random, then
partial omega-squared for the fixed factor A is

ω2
A,partial =

∑a
j=1(α

2
j/a)

σ2
e +

∑a
j=1(α

2
j/a)

and is estimated by
ω̂2
A,partial =

(a− 1)(FA − 1)

(a− 1)(FA − 1) + nab

The partial intraclass correlations for the random components B and A×B are

ρI:B ,partial =
σ2
β

σ2
β + σ2

e

ρI:AB ,partial =
σ2
(αβ)

σ2
(αβ) + σ2

e

Estimates of the partial intraclass correlations can be obtained from estimates of the variance components,
which in turn can be derived from values in the ANOVA table. When A is fixed and B is random, the variance
components for B, A×B, and the error term are

σ̂2
β =

MSB −MSR
na

σ̂2
(αβ) =

MSA×B −MSR
n

σ̂2
e = MSR

When A and B are both random, the expected values of the mean squares change – now the values for both
main effects are influenced by the A×B interaction (see Table 3) – and therefore the variance components are
calculated with the following formulae:

σ̂2
α =

MSA −MSA×B

nb

σ̂2
β =

MSB −MSA×B

na

σ̂2
(αβ) =

MSA×B −MSR
n

σ̂2
e = MSR
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Note that it is possible for these so-called ANOVA estimates of variance components to be negative, and therefore
for intraclass correlations to be less than zero. Such values cannot correspond to the true population values
because variances must be equal to or greater than zero, and the true intraclass correlation must be between
zero and 1 (inclusive). Therefore, when the estimated association strength is less than zero, it is standard
practice to set it to zero.

10.3.4 Mixed factorial example

This example uses data shown in Table 10.5 (page 561) of Maxwell and Delaney (2004). The data come from a
fictitious study that examined the effectiveness of two programs to prepare high-school students for US-college
entrance exams. One study program uses a traditional package of written materials, whereas the other is based
on an interactive computer program. The experiment compared the two study programs in four randomly
selected schools. The type of program is represented by the fixed factor study, but schools is a random factor.
Hence, we will use a mixed model to analyze these data.

options(contrasts=c("contr.sum","contr.poly"))
fn <- "http://pnb.mcmaster.ca/bennett/psy710/datasets/mw/chapter_10_table_5.dat"
mw.act <- read.table(file=url(fn))
names(mw.act)<-c("study","school","score")
mw.act$study<-factor(mw.act$study,labels=c("computer","standard"))
mw.act$school<-factor(mw.act$school,labels="s")
with(mw.act,tapply(score,list(study,school),length))

## s1 s2 s3 s4
## computer 5 5 5 5
## standard 5 5 5 5

act.aov.01 <- aov(score~study+school+study:school,data=mw.act)
summary(act.aov.01)

## Df Sum Sq Mean Sq F value Pr(>F)
## study 1 360 360 19.93 9.4e-05 ∗∗∗
## school 3 100 33 1.85 0.16
## study:school 3 80 27 1.48 0.24
## Residuals 32 578 18
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The anova table shows the F and p values for a fixed-effects model: all F values are calculated using MSR for
the denominator in F statistic. However, schools is a random factor, and therefore the mean square for study
(i.e., the fixed factor) should be compared to the mean square value for the study × school interaction (see
Table 3). The correct values of F and p for the main effect of study are

(F.study <- 360/26.67)

## [1] 13.5

(p.study <- 1-pf(F.study,1,3))

## [1] 0.0349
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Therefore, we do not reject the null hypotheses that σ2
school = 0 and σ2

study :school = 0, but we do reject the null
hypothesis that the marginal means of the two levels of study are equal.

The variance components are

σ̂2
school =

33.33− 26.67

2× 5
= 0.67

σ̂2
study :school =

26.67− 18.06

5
= 1.72

σ̂2
e = 18.06

Obviously, the variance components associated with school and study:school are much smaller than the error
variance3. Partial intraclass correlations for the two random effects are

ρI:school ,partial =
0.67

0.67 + 18.06
= 0.036

ρI:study :school ,partial =
1.72

1.72 + 18.06
= 0.087

The association strength for the fixed effect is

ω̂2
study ,partial =

(2− 1)(13.49− 1)

(2− 1)(13.49− 1) + 5× 2× 4
= 0.237

and the effect size is

f̂study =

√
0.237

1− .237
= 0.56

This is a large effect.

10.3.5 Using Error in aov

The random effects in a mixed factorial design can be specified in aov using the Error term in the model
formula:

act.aov.02 <- aov(score~study+Error(school+study:school),data=mw.act)
tmp <- summary(act.aov.02)
print(tmp,digits=4)

##
## Error: school
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 3 100 33.33
##
## Error: school:study
## Df Sum Sq Mean Sq F value Pr(>F)
## study 1 360 360.0 13.5 0.0349 ∗

3Note that this finding – i.e., that variation on our dependent variable that is related to schools was small compared to error
variance – might be interesting and important. In fact it might be more important than the result showing that the effectiveness of
the two programs of study differ.
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## Residuals 3 80 26.7
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 32 578 18.06

Note that the fixed effect of study is evaluated with the correct error term and therefore we do not have to
recalculate the F and p values. The variance components can be calculated using the MS values listed in the
Residuals lines in the sections titled Error: school and Error: school:study.

The variance components and measures of association strength can be estimated from values listed in the
ANOVA table:

# variance components:
school.var <- (33.33 - 26.7) / (5*2) # variance component
school_x_study.var <- (26.7-18.06) / 5 # variance component
error.var <- 18.06
# association strength
# partial intraclass correlations
school.pICC <- school.var/(school.var + error.var)
school_x_study.pICC <- school_x_study.var/(school_x_study.var + error.var)
# partial omega squared:
study.part.o2<-(2-1)*(13.5-1)/((2-1)*(13.5-1)+5*2*4)
# list values:
c(study.part.o2,school.pICC,school_x_study.pICC)

## [1] 0.23810 0.03541 0.08733

The variance components can be calculated directly using anovaMM in the VCA package. In the model formula,
each random effect must be enclosed by round brackets. The column %Total lists the intraclass correlations (as
opposed to the partial intraclass correlations).

library(VCA)
# note capital D in Data
vca.res <- anovaMM(score~study+(school)+(study:school),Data=mw.act)
print(vca.res,digits=3)

##
##
## ANOVA -Type Estimation of Mixed Model:
## --------------------------------------
##
## [Fixed Effects]
##
## int studycomputer studystandard
## 27 -6 0
##
##
## [Variance Components]
##
## Name DF SS MS VC %Total SD CV[%]
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## 1 total 33.193 20.45 100 4.522 18.842
## 2 school 3 100 33.333 0.667 3.26 0.816 3.402
## 3 study:school 3 80 26.667 1.721 8.415 1.312 5.466
## 4 error 32 578 18.062 18.062 88.325 4.25 17.708
##
## Mean: 24 (N = 40)
##
## Experimental Design: balanced | Method: ANOVA

10.3.6 Using lmer

In this section we analyze the mixed design with the lmer command. The model formula includes two random
effects: one for school and one for the study × school interaction.

library(lmerTest)
options(contrasts=c("contr.sum","contr.poly"))
school.lme <- lmer(score~study+(1|school)+(1|study:school),data=mw.act)
anova(school.lme) # fixed effect

## Type III Analysis of Variance Table with Satterthwaite 's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## study 244 244 1 3 13.5 0.035 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The variance components are extracted with VarCorr, and tests of the statistical significance of each random
effect are performed by ranova. Finally, measures of association strength are given by icc in the performance
package. Note that the ICC values are equal to those listed in the %Total column by anovaMM.

VarCorr(school.lme) # var components as std dev

## Groups Name Std.Dev.
## study:school (Intercept) 1.312
## school (Intercept) 0.817
## Residual 4.250

ranova(school.lme) # significance tests

## ANOVA -like table for random -effects: Single term deletions
##
## Model:
## score ~ study + (1 | school) + (1 | study:school)
## npar logLik AIC LRT Df Pr(>Chisq)
## <none> 5 -114 238
## (1 | school) 4 -114 236 0.0373 1 0.85
## (1 | study:school) 4 -114 236 0.2319 1 0.63

# association strength for random effects
library(performance)
icc(school.lme,by_group=T)
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## # ICC by Group
##
## Group | ICC
## --------------------
## study:school | 0.084
## school | 0.033

# association strength for fixed effects
library(effectsize)
omega_squared(school.lme)

## # Effect Size for ANOVA (Type III)
##
## Parameter | Omega2 (partial) | 95% CI
## -------------------------------------------
## study | 0.71 | [0.00, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

10.4 Nested Factors
A factor is said to be nested within another factor if each level of the first factor occurs in conjunction with
only one level of the second factor. So B is nested within A if each level of B occurs within only one level of
A. An example of a design in which B is nested within A that uses n = 6 subjects per cell is shown in Table
4. Notice that b1−3 occur only with a1, whereas b4−6 occur only with a2. A nested design can be thought of as
a factorial design that is missing some cells. Obviously, the fact that some cells are missing means that some
parameters of the full model for factorial designs (Equation 1) cannot be estimated. For instance, there is no
way to estimate the A×B interaction because some of the combinations of A and B are missing.

The full model for a nested design (i.e., B nested within A) is

Yijk = µ+ αj + βk/j + ϵijk (22)

αj is defined as it has been in all previous models: it represents the difference between the marginal mean of
level aj and the grand mean (i.e., αj = µj. − µ). The term for the nested effect, βk/j , is defined as

βk/j = µjk − µj.

which is the difference between a cell mean and the marginal mean for the non-nested factor in which the cell
appears. Another way of describing βk/j is to say that it is the simple effect of the k-th level of B (the nested
factor) in the j-th level of A (the non-nested factor). The error term, ϵijk, is a normally distributed random
variable with a mean of zero and a population variance of σ2

e . Notice that Equation 22 does not include an
interaction term.

Table 4: Example of a nested design.

b1 b2 b3 b4 b5 b6
a1 6 6 6 x x x
a2 x x x 6 6 6
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The sum of squares for the effects in Equation 22 are calculated the standard way, namely by constructing
reduced models that have the effects of interest set to zero, and then calculating the change in the sum of
squared residuals. For the nested term, the sum of squares is denoted by SSB/A and equals

SSB/A

∑
j

∑
k

nβ̂2
k/j

which can be shown to equal to be equivalent to

SSB/A =

a∑
j=1

SSB w Aj

Hence, the sum of squares for the nested factor is obtained by pooling the sums of squares of the simple effect
of B at each level of A.

Table 5: Expected mean squares for nested designs (B nested within A).

ξ(MS) ξ(MS) df
Source A fixed; B random A & B random

A σ2
e + nσ2

β + bn
∑a

j=1 αj/(a− 1) σ2
e + nσ2

β + bnσ2
α a− 1

B/A σ2
e + nσ2

β σ2
e + nσ2

β

∑a
j=1(b− 1) = a(b− 1)

Residuals σ2
e σ2

e ab(n− 1)

The expected mean squares and degrees of freedom for mixed and random-effects nested designs are shown
in Table 5. Note that the degrees of freedom for the nested factor is a(b − 1), where b equals the number of
levels of B in each level of A. The values of ξ(MS ) make it clear that the main effect of A should be evaluated
by comparing MSA to MSB/A, and the effect of B/A is evaluated by comparing MSB/A to MSR. When B is
random, the null hypothesis is that σ2

β = 0.

10.4.1 variance components

When A is fixed and B is random, the variance of our dependent variable will have two components, σ2
ϵ and

σ2
β. The ANOVA estimate of σ2

ϵ is given by the Mean Square Within-cell (or Mean Square Residuals). The
ANOVA estimate of σ2

β is

σ2
β =

MSB/A −MSR

n
(23)

where MSR is the Mean-Square Residuals and n is the number of observations per cell (which is assumed to be
constant).

When A and B are both random, the variance of our dependent variable will have three components, σ2
ϵ ,

σ2
β, and σ2

α. The ANOVA estimates of σϵ and σβ are given by the Mean Square Within-cell and Equation 23,
respectively. The ANOVA estimate of σ2

α is

σ2
α =

MSA −MSB/A

bn
(24)

where MSB/A is the Mean-Square for B nested within A, b is the number of levels of B within each level of A,
and n is the number of observations per cell.
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10.4.2 homogeneity of variance assumption

The assumptions underlying our analysis of a nested design are similar to those used in previous models. The
errors are assumed to be distributed normally with constant variance. When A or B is random, then the effects
are assumed to be distributed normally with variances σ2

α and σ2
β, and the random factors are assumed to be

independent of each other and ϵ. There is, however, one additional assumption that we make when we analyze
a nested design: Specifically, we must assume that the βk/j terms have the same variability at each level
of factor A. In other words, σ2

β does not depend on, or interact with, A. Note that we have to make this
assumption because there is no obvious way to evaluate the A×B interaction in this design.

10.4.3 R example: clinical psychology

The first example uses data from a fictitious study that examined the effect of gender on the severity ratings
that clinical psychology graduate students assigned to patients (see Table 10.9, Maxwell and Delaney, 2004).
Three male and three female clinical trainees were selected randomly to participate, and four patients were
assigned randomly to each trainee. In this experiment, gender is a fixed factor and trainee is a random factor
that is nested within gender.

fn <- "http://pnb.mcmaster.ca/bennett/psy710/datasets/mw/chapter_10_table_9.csv"
mw10.9 <- read.csv(file=url(fn))
mw10.9$gender<-factor(mw10.9$gender,labels=c("male","female"))
mw10.9$trainee<-factor(mw10.9$trainee,labels="t")
xtabs(~gender+trainee,data=mw10.9)

## trainee
## gender t1 t2 t3 t4 t5 t6
## male 4 4 4 0 0 0
## female 0 0 0 4 4 4

summary(mw10.9)

## gender trainee score
## male :12 t1:4 Min. :31.0
## female:12 t2:4 1st Qu.:45.5
## t3:4 Median :53.5
## t4:4 Mean :53.0
## t5:4 3rd Qu.:60.0
## t6:4 Max. :72.0

There are several things to note. Each trainee is given a unique number, so the three trainees in the female
level of gender are designated as trainees 4, 5, and 6 rather than 1, 2, and 3. This coding is important because
it tells R that the two sets of trainees are different. Second, the linear model lacks an interaction term, which is
appropriate for this design because it does not include all combinations of the two factors. The ANOVA table
is shown next:

options(contrasts=c("contr.sum","contr.poly"))
mw10.9.aov <- aov(score~gender+trainee,data=mw10.9)
summary(mw10.9.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## gender 1 1176 1176 25.81 7.8e-05 ∗∗∗
## trainee 4 472 118 2.59 0.072 .
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## Residuals 18 820 46
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The ANOVA table incorrectly lists the second effect as trainee rather than trainee/gender. In addition, the
F and p values for gender were obtained by comparing the means square for gender to MSR, and therefore
these values are incorrect. The correct values are obtained by comparing the mean square for gender to the
mean square for trainee.

# recalculate F & p for gender:
(F.gender <- 1176/118)

## [1] 9.966

(p.gender <- 1-pf(F.gender,df1=1,df2=4) )

## [1] 0.03429

The previous analysis can be simplified by using Error in aov. Note that the effect of gender is evaluated
with the proper error term, and therefore that the F and p values do not have to be recalculated.

mw10.9.aov.02 <- aov(score~gender+Error(trainee),data=mw10.9)
summary(mw10.9.aov.02)

##
## Error: trainee
## Df Sum Sq Mean Sq F value Pr(>F)
## gender 1 1176 1176 9.97 0.034 ∗
## Residuals 4 472 118
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 18 820 45.6

It is important to note that the correct sorting of the error term occurs only when the six levels of trainee
are given unique identifiers, so that the trainees crossed with male clearly differ from the trainees crossed with
female. For example, the following anova mistakenly assumes that the three levels of trainee are crossed with
gender:

mw10.9$newtrainee <- factor(x=rep(x=c(1,2,3),each=4,times=2),labels="t")
xtabs(~gender+newtrainee,data=mw10.9)

## newtrainee
## gender t1 t2 t3
## male 4 4 4
## female 4 4 4

summary(aov(score~gender+Error(newtrainee),data=mw10.9))
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##
## Error: newtrainee
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 2 156 78
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## gender 1 1176 1176 20.7 0.00019 ∗∗∗
## Residuals 20 1136 57
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

Finally, the analyses can be performed using lmer:

library(lme4)
library(lmerTest)
mw10.9.lme <- lmer(score~gender+(1|trainee),data=mw10.9)
anova(mw10.9.lme)

## Type III Analysis of Variance Table with Satterthwaite 's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## gender 454 454 1 4 9.97 0.034 ∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The variance component for trainee is calculated from the mean square values for trainee and gender and
group n. The estimated variance component for trainee (18.11) is approximately 40% of the estimated error
variance (45.56). The following code shows how to print variances, rather than standard deviations, extracted
from the lme variable with VarCorr.

# from anova table:
MS.TraineeInGender <- 118
MS.resid <- 45.56
n <- 4;
(Var.Comp.Trainee <- (MS.TraineeInGender - MS.resid)/n)

## [1] 18.11

# from lme model:
vc <- VarCorr(mw10.9.lme)
print(vc,comp=c("Variance"))

## Groups Name Variance
## trainee (Intercept) 18.1
## Residual 45.6

We can estimate the strength of association between gender and the dependent variable by calculating the
variance components for trainee and error and then using those values to calculate omega squared and partial
omega squared for gender using the equations shown in Figure 1.
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a <- 2 # 2 genders
b <- 3 # levels on trainee factor within each level of gender
n <- 4 # measures per cell
MS.gender <- 1176
MS.trainee.in.gender <- 118
MS.error <- 45.6
# variance components
var.comp.error <- MS.error
( var.comp.trainee <- (MS.trainee.in.gender - MS.error)/n )

## [1] 18.1

# intraclass correlation for trainee:
( icc.trainee <- var.comp.trainee/(var.comp.trainee + var.comp.error) )

## [1] 0.2841

# partial omega squared for gender using equations in Fig 1:
( sigma.alpha.squared <- (a-1)/a * (MS.gender - MS.trainee.in.gender)/(b*n) )

## [1] 44.08

( omega.squared <- sigma.alpha.squared / (sigma.alpha.squared + var.comp.trainee + var.comp.error) )

## [1] 0.409

( p.omega.squared <- sigma.alpha.squared / (sigma.alpha.squared + var.comp.error) )

## [1] 0.4915

The intraclass correlation and partial omega-squared also can be estimated with the performance and
effectsize packages.

# intra-class correlation
library(performance)
icc(mw10.9.lme,by_group=T)

## # ICC by Group
##
## Group | ICC
## ---------------
## trainee | 0.284

# effectsize
library(effectsize)
omega_squared(mw10.9.aov.02)

## # Effect Size for ANOVA (Type I)
##
## Group | Parameter | Omega2 (partial) | 95% CI
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## -----------------------------------------------------
## trainee | gender | 0.60 | [0.00, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

Notice that the value of omega squared is greater than the one calculated previously. The reason for this
discrepency is that effectsize estimates ω2

p from the F statistic using the formula

ω2
p =

(F − 1)× df num
F × df num + df den + 1

which yields a value of 0.6 (see the effectsize help page on github). The F_to_omega2 command yields the
same estimate of ω2

p.

# in effectsize package
F_to_omega2(9.97,1,4) # approximation to omega-squared

## Omega2 (partial) | 95% CI
## -------------------------------
## 0.60 | [0.00, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

10.4.4 R example: turnips

The second example uses data from Table 10.16.1 (p 286) in Snedecor and Cochran (1967). Four turnip plants
were selected at random, then three leaves were selected randomly from each plant. Finally, two 100 mg samples
were taken from each leaf, and the calcium concentration was measured for each sample. The data are shown
in Table 6. Plant and leaf are random factors, and leaf is nested within plant. We want to use ANOVA to
estimate the variance components for plant, leaf, and samples (i.e., error).

Table 6: Data from Table 10.16.1 in Snedecor and Cochran (1967).

Plant Leaf Samples
1 1 3.28, 3.09
1 2 3.52, 3.48
1 3 2.88, 2.80
2 4 2.46, 2.44
2 5 1.87, 1.92
2 6 2.19, 2.19
3 7 2.77, 2.66
3 8 3.74, 3.44
3 9 2.55, 2.55
4 10 3.78, 3.87
4 11 4.07, 4.12
4 12 3.31, 3.31
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load(url("http://pnb.mcmaster.ca/bennett/psy710/datasets/turnips.rda"))
xtabs(~plant+leaf,data=turnips)

## leaf
## plant L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
## p1 2 2 2 0 0 0 0 0 0 0 0 0
## p2 0 0 0 2 2 2 0 0 0 0 0 0
## p3 0 0 0 0 0 0 2 2 2 0 0 0
## p4 0 0 0 0 0 0 0 0 0 2 2 2

n <- 2
a <- 4
b <- 3
summary(aov(calcium~plant+leaf,data=turnips) )

## Df Sum Sq Mean Sq F value Pr(>F)
## plant 3 7.56 2.520 378.7 3.8e-12 ∗∗∗
## leaf 8 2.63 0.329 49.4 5.1e-08 ∗∗∗
## Residuals 12 0.08 0.007
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

R prints the ANOVA table under the assumption that the two factors are fixed, and therefore the F’s are
calculated by dividing the mean square values for each factor by the mean square residuals. The resulting F
and p values for leaf are correct, but the we need to recalculate F and p for plant using the mean square for
leaf:

(F.plant <- 2.5201/.3288) # denominator from leaf

## [1] 7.665

(p.plant <- 1-pf(F.plant,3,8) )

## [1] 0.009727

The F ’s for plant and leaf are both significant, so we reject the null hypotheses that the variance components
are zero. Finally, we calculate the variance components from values listed in the ANOVA table, and then use
those values to compute the partial intraclass correlations for plant and leaf:

var.comp.error <- .0067
( var.comp.leaf <- (.3288-.0067) / n )

## [1] 0.161

( var.comp.plant <- (2.5201 - .3288) / (b*n) )

## [1] 0.3652
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# estimate of pop stand dev for calcium:
sqrt(var.comp.plant + var.comp.leaf + var.comp.error)

## [1] 0.73

# compare estimate to sample st dev
sd(turnips$calcium)

## [1] 0.6682

(part.icc.leaf <- var.comp.leaf / (var.comp.leaf + var.comp.error) )

## [1] 0.9601

(part.icc.plant <- var.comp.plant / (var.comp.plant + var.comp.error) )

## [1] 0.982

Our analysis suggests that the variation among samples within a leaf is very small compared to variation among
leaves and plants. Finally, we analyze the data using lme.

library(lmerTest)
turnip.lme.01 <- lmer(calcium ~ 1 + (1|plant) + (1|leaf),data=turnips)
anova(turnip.lme.01) # nothing here; no fixed effects

## Type III Analysis of Variance Table with Satterthwaite 's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

ranova(turnip.lme.01) # chi-square tests on random effects

## ANOVA -like table for random -effects: Single term deletions
##
## Model:
## calcium ~ (1 | plant) + (1 | leaf)
## npar logLik AIC LRT Df Pr(>Chisq)
## <none> 4 -1.09 10.2
## (1 | plant) 3 -3.73 13.5 5.29 1 0.022 ∗
## (1 | leaf) 3 -15.62 37.2 29.07 1 7e-08 ∗∗∗
## ---
## Signif. codes: 0 '∗∗∗' 0.001 '∗∗' 0.01 '∗' 0.05 '.' 0.1 ' ' 1

The ANOVA table is empty because the model does not include any fixed effects. The random effects are evalu-
ated with chi-square tests: both are significantly greater than zero. Next we calculate the variance components
and the intraclass correlations.

vc <- VarCorr(turnip.lme.01)
print(vc,comp="Variance")
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## Groups Name Variance
## leaf (Intercept) 0.16117
## plant (Intercept) 0.36460
## Residual 0.00665

library(performance)
icc(turnip.lme.01,by_group=T)

## # ICC by Group
##
## Group | ICC
## -------------
## leaf | 0.303
## plant | 0.685

Note that icc lists the proportion of variance for each random effect relative to all variance components, not
the partial intraclass correlation. For example, the value for leaf equals

ρ̂plant =
σ̂2
plant

σ̂2
plant + σ̂2

leaf + σ̂2
error
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